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ANALYSIS OF HEAT TRANSFER IN SUBCOOLED METAL POWDER 

SUBJECTED TO PULSED LASER HEATING 

Chad Konrad 

Dr. Yuwen Zhang, Thesis Supervisor 

ABSTRACT 

The interaction of metal powder and pulsed laser heat flux is investigated on two 

levels, the powder bed level and the particle level.  The locations of the thermal 

penetration depth and the liquid-solid interface are obtained using the integral 

approximate method.  Melting and resolidification of a subcooled, two-component metal 

powder bed subjected to temporal Gaussian heat flux is investigated analytically.  An 

increase in heat source intensity or powder bed porosity will result in an increase of the 

melt pool depth, melt pool temperature, and the overall processing time.  The melt pool 

becomes shallower with increasing subcooling.  Heat conduction in a single subcooled 

metal powder particle subjected to nanosecond pulsed laser heating is also investigated 

analytically.  A change in the repetition rate of the laser or an increase in maximum heat 

flux will result in a larger temperature rise on the surface of the particle, as well as a 

higher thermalized particle temperature after the laser pulse is finished.  Although a 

discrepancy exists where peak surface temperatures are concerned, the thermalized 

temperatures of different-sized spheres are all the same.  The time at which the particle is 

fully penetrated is only affected by a change in thermal diffusivity, laser pulse width, or 

particle radius.  The physical model and results of this investigation pave the way for 

further modeling of Selective Laser Sintering (SLS) processes with a pulsed laser.   
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NOMENCLATURE 

slh    latent heat of fusion [ 1J kg −⋅ ] 

k    thermal conductivity [ 1 1W m C− −⋅ ⋅D ] 

K    dimensionless thermal conductivity 

''q   heat flux [ 2W m−⋅ ] 

s   solid-liquid interface location [ m ] 

0s   location of liquid surface [ m ] 

S    dimensionless solid-liquid interface location 

0S   dimensionless location of liquid surface 

Sc    subcooling parameter 

Ste    Stefan number 

t    time [ s ] 

pt    half width of the laser beam pulse at 1/e [ s ] 

T    temperature [ CD ] 

w    velocity of liquid phase [ 1m s−⋅ ] 

W    dimensionless velocity of the liquid phase 

x  coordinate [ m ] 

z    coordinate [ m ] 

Z    dimensionless coordinate 

Greek Symbols 

α    thermal diffusivity [ 2 1m s−⋅ ] 

α    dimensionless thermal diffusivity 



 ix

δ    thickness of thermal layer [ m ] 

Δ    dimensionless thickness of thermal layer 

ε    volume fraction of gas(es) (porosity for unsintered powder) 

θ   dimensionless temperature (Chapter 2) or excess temperature [  DC ] (Chapter 3) 

ρ    density [ 3kg m−⋅ ] 

τ    dimensionless time 

pτ  half width of the laser beam pulse at 
1
2

q0
"  [ s ] 

φ    volume fraction of the low melting point powder in the powder mixture 

Subscripts 

0    beginning (when preheating begins)  

final   final (when solidification ends) 

g   gas(es) 

H  high melting point metal 

i   initial 

A   liquid phase (mixture of low melting point metal liquid and high melting point 

powder solid) 

L    low melting point powder 

m    melting point (when melting begins) 

p    fully densified resolidified part 

r    resolidified part 

s    unsintered solid (mixture of two solid powders)  

sol    solidification (when solidification begins) 
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Chapter 1.  Introduction 

 

Selective Laser Sintering (SLS) is an emerging technology that can build structurally-

sound parts from powdered material via layer-by-layer sintering (for amorphous powder, 

such as polycarbonate) or melting (for crystalline powder, such as metal) induced by a 

directed laser beam.  Fabrication of metal parts is a very challenging task since the 

temperature required to bind the metal powder particles is much higher than that needed 

to bind the amorphous powder particles.  SLS is a very useful rapid manufacturing 

method because it allows for the manufacture of complex parts often unobtainable by 

more common manufacturing processes [1, 2].  During the SLS process the surface of a 

powder bed is scanned with a laser heat source to melt the powder and as the beam 

moves away the liquid resolidifies into a solid.  Another layer of powder is then pushed 

over the newly solidified surface and the process is repeated, thus building a solid object 

layer by layer.  

Recent advances in metallic SLS have improved the technology, but it still remains 

limited in terms of material versatility, quality, and precision [3].  The behaviors of the 

powders used in SLS processes are quite different depending on the material, the shape 

and size of powder particles and so on, and it is necessary to use a trial and error method 

to find suitable materials for an SLS process [4].  It is for these reasons that a sound 

theoretical SLS model must be developed so that the results of SLS techniques and the 

quality of the parts can be predicted accurately. 

There are other obstacles that must also be overcome before SLS can be used for 

mass production of final, high quality parts that exhibit good surface finish and desirable 
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mechanical properties.  One such obstacle is the balling phenomenon [5], in which 

melted powder grains stick to each other via surface tension forces, thereby forming a 

series of spheres with diameters approximately equal to the diameter of the laser beam. 

The balling phenomenon is well documented, an extensive study of which can be found 

in Tolochko et al. [5].   

There are several ways the balling phenomenon can be combated, one of which is to 

use a powder bed consisting of two different types of metal powder, one with a 

significantly higher melting point than the other as suggested by Bunnell [6] and Manzur 

et al. [7].  If such a mixture is used the higher melting point powder will not melt, 

breaking up the surface tension forces and forcing out the interstitial gasses as desired.  

An analytical one-dimensional analysis of this phenomenon can be found in Konrad et al. 

[8], in which the effects of the porosities, Stefan number, and subcooling on the surface 

temperature and solid-liquid interface were investigated. Zhang and Faghri [9] 

analytically solved a one-dimensional melting problem in a semi-infinite two-component 

metal powder bed subjected to constant heat flux.  The effects of the porosity of the loose 

powder and liquid, initial subcooling parameter, and dimensionless thermal conductivity 

of the interstitial gas were investigated. Chen and Zhang [10] obtained the analytical 

solution of melting in a two-component powder layer with finite thickness subject to 

constant heat flux.   

Another way to minimize the balling effect is to use a pulsed laser to decrease the life 

span of the melt pool and thus help avoid the balling effect [11].  In a traditional SLS 

process a high-power CO2 laser scans the surface of the metal powder bed, 

homogeneously heating the grains.  If a low-power, short-pulse laser is used, however, 



 3

the high intensity pulses will heat the outer surface of the powder grain to a very high 

temperature yet leave the interior of the grain at the ambient temperature.  If enough 

pulses are used, the outer surfaces of the powder grains will melt, join together and, 

within several microseconds, resolidify as the cool interior portion of the powder grain 

acts as a heat sink to draw in the latent heat of the outer liquid layer.  Using this sintering 

mechanism, powder grains will be joined at a much lower average temperature using 

moderate laser power, typically less than 10W, as well as minimizing balling effects and 

introducing less residual stress in the workpiece [12].  When a pulsed Nd:YAG laser is 

used this process will yield higher lateral precision than the CO2 process due to its 

smaller wavelength.  In addition, the degree of partial melting and ultimately, the local 

porosity in the final product can be easily controlled.   

A recent thermal model proposed by Fischer et al. [13] proposes modeling a pulsed 

SLS process by focusing on the melting and resolidification of a single grain of the 

powder bed in order to understand the process on a more fundamental level.  The paper 

suggests two laser processing scenarios, the first of which consists of a low repetition rate 

and a high single pulse energy.  These parameters result in the melting of a narrow skin 

layer on the surface of the particle with only one pulse, however, the strong recoil effect 

from such a high power pulse may result in blowing the powder away before any 

consolidation can take place.  The other processing scenario calls for a high repetition 

rate with a low energy single pulse.  In this case it takes a superposition of many pulses to 

raise the grain to its melting temperature, at which point sintering occurs.  The time 

between pulses is long enough that thermalization can occur in the powder particle, 

leading to an average temperature that is higher than the previous initial temperature.   
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The fundamentals of melting and solidification have been investigated extensively 

[14,15], however, laser-induced melting of metal powder in SLS processes differs from 

conventional melting because the subcooled powder can consist of as much as 40-60% 

gas.  During melting it is necessary for the liquid phase to collect and drive the interstitial 

gasses out of the powder bed, effectively “shrinking” the volume of the powder bed.  It is 

because of this shrinkage phenomenon that the powder bed experiences a significant 

density change during the melting process, resulting in motion of the surface of the 

powder bed during the SLS process.   

Although early research in SLS processes was conducted exclusively with 

Continuous Wave (CW) lasers, pulsed lasers with pulse widths ranging from milliseconds 

(Su et al. [16] and Abe et al. [4]) to nanoseconds (Morgan et al. [11] and Fischer et al. 

[3,12]) have also recently been used to sinter metal powders.  Su et al. [16] investigated 

fully dense laser sintering of tool steel powder using a Nd:YAG laser with pulse widths 

between 0.5 and 20 ms and average power up to 550W.  Abe et al. [4] studied SLS of 

titanium powders using a YAG laser with pulse widths from 1 to 5 ms and an average 

power of 50W.  The average power levels of the millisecond lasers used by Su et al. [16] 

and Abe et al. [4] are comparable to that of a CW laser because the conduction heat loss 

into the unsintered region for a millisecond laser is similar to that of a CW laser.  

The results of SLS experiments performed by Morgan et al. [11] on gas atomized 

316L stainless steel using a nanosecond Nd:YAG laser showed that the vaporization 

recoil force overcame the surface tension forces acting on the melt, therefore improving 

the cohesion of the powder particles when compared to the CW SLS process.  When a 

nanosecond laser is used to sinter metal powder the papers by Fischer et al. [3,13] suggest 
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that only a thin surface layer of the powder particle is melted and the core of the particle 

remains at its initial temperature, as described above.  The temperature in this thin skin of 

liquid on the surface of the particle was estimated by a one-dimensional conduction 

model of a single spherical particle surrounded by a continuum that represents 

neighboring particles.  Fischer et al. [3,12] performed SLS experiments on titanium 

powder with a nanosecond Nd:YAG laser operated at a pulse width of 150 ns and 

repetition rate between 1 and 30 kHz. 

In order to discover the advantages of utilizing a pulsed laser in a SLS process, 

melting and resolidification of a two-component powder bed will be modeled.  The 

effects of a change in heat source intensity, powder bed porosity, and subcooling 

parameter will be investigated.  In addition to the powder bed level analysis, a particle 

level analysis will be conducted by examining heat conduction in a single spherical grain 

of metal powder.  The effects of a change in laser pulse width, heat flux at the surface, 

thermal diffusivity, and particle radius on the simulation will also be investigated.  This 

paper represents a fundamental study of the SLS process upon which more 

comprehensive models may be based on in the future.   
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Chapter 2. Melting and resolidification of a two-component powder bed 

 

Melting and resolidification of a bed of powder particles subjected to temporal 

Gaussian heat flux from a laser beam will be modeled in this chapter.  The diameter of 

the metal powder particles is much smaller than the diameter of the laser beam, which is 

in turn much smaller than the final desired part.   

2.1 Physical model 

The physical model of melting and resolidification is shown in Fig. 2.1. 

 

Figure 2.1  The physical model.   

 

The initial temperature of the powder bed of infinite thickness, which contains two 

metal powders with significantly different melting points, is well below the melting 

temperature of the low melting point metal powder component.  The origin of time is 

liquid ( A ) 

unsintered powder (s) 

s0 

s 
z 

''( )q t  

''( )q t  

t tp -tp 

1
e

 1
e

 

0 

0
''q

original surface 
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chosen to be the time at which the heat flux is at its maximum, thus the time-dependent 

heat flux is 

 

2

2

0
'' ''( ) p

t
tq t q e

−

=  (1) 

Although the origin of time, 0t = , is chosen to be when the heat flux is at its maximum, 

the time at which the simulation begins will be t = −∞  so that the entire pulse energy is 

used.   

The laser-powder bed interaction can be divided into three stages: (1) preheating, (2) 

melting with shrinkage, and (3) resolidification. During the preheating period the powder 

bed must absorb a significant amount of heat to bring the powder bed surface temperature 

up to the melting temperature of the low melting point powder, mT .  The duration of the 

preheating stage is defined as the time it will take for the surface temperature to reach mT .  

The melting stage begins after the surface temperature of the powder bed has reached the 

melting temperature of the low-melting point powder.  During this period the powder 

melts rapidly and consolidates into a liquid pool.  This consolidation results from the fact 

that the liquid cannot maintain the relatively high initial porosity of the solid powder bed 

and therefore the interstitial gasses are driven out of the liquid pool.  This consolidation 

of the powder bed results in a significant density change, and thus liquid surface motion.  

The resulting liquid pool is not fully dense, in other words some interstitial gas is still 

trapped within the liquid phase, because the liquid lifetime is very short.  It should be 

restated that the metal with the higher melting point will not melt during the entire 

process.  The surface heat flux will reach its maximum at time 0t = , after which the heat 

flux will begin to decrease.  This will result in a cooling of the melt pool and eventually 
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resolidification into a solid layer.  When the pool has completely resolidified, the process 

is over and the resolidified part will begin to cool to the ambient temperature.   

This chapter presents analysis of a one dimensional model of the phase change 

undergone by the first layer of the SLS process on a cold powder bed.  The true SLS 

process is, of course, a three dimensional, multiple-layer process in which layer after 

layer of powder is added to the surface of the bed.  A semi-infinite powder bed is 

assumed in this model, as in Zhang and Faghri [9], however, an analysis of a finite 

thickness powder bed with constant heat flux may be found in Chen and Zhang [10].  It is 

assumed that the liquid phase is incompressible and the material properties are not 

affected by changes in temperature or pressure.  The radiation and convection from the 

liquid surface are neglected so that the excess heat of the liquid must be dissipated in the 

form of conduction into the powder bed in order for the melt pool to resolidify.   

2.1.1  Governing equations 

2.1.1.1  Preheating stage 

During preheating the powder bed can be described as a pure conduction problem.  

The heat conduction equation in the powder bed is  

 
2

2 ,           0,  s s
s m

T T z t t
t z

α∂ ∂
= > −∞ < <

∂ ∂
 (2) 

subject to the boundary conditions  

 ,                   ,  s iT T z t→ →∞ > ∞  (3) 

 ,                   0,  s iT T z t= ≥ = −∞  (4) 

The heat flux at the surface is governed by 
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 ''( ),           0,  s
s m

Tk q t z t t
z

∂
− = = −∞ < <

∂
 (5) 

where sk  is the effective conductivity of the unsintered powder bed and is related to the 

conductivities of the metal powder particles and the interstitial gas,  and p gk k , as well as 

porosity, sε  [17].   

2.1.1.2  Melting with shrinkage stage 

After melting has begun, mt t≥ , the governing equation in the liquid phase is 

 
2

02 ,           ( ),  m sol
T T Tw s z s t t t t
z t z

α ∂ ∂ ∂
= + < < < <

∂ ∂ ∂
A A A

A  (6) 

where solt  is the time at which melting ends and solidification begins, and w  is the 

velocity in the liquid induced by the shrinkage of the powder bed, which plays an 

important role in heat transfer in the liquid region as demonstrated by an order of 

magnitude analysis in Ref. [9].  Equation (6) is subject to the following boundary 

condition 

 0''( ),           ,  m sol
Tk q t z s t t t
z

∂
− = = < <

∂
A

A  (7) 

The conductivity of the liquid melt pool, kA , is obtained by   

 (1 ) pk kε= −A A  (8) 

 

Since the liquid is incompressible, the shrinkage velocity can be expressed by  

 0
0,           ( ),  m sol

dsw s z s t t t t
dt

= < < < < . (9) 

The governing equation for the solid phase (loose powder) after melting begins is  



 10

 
2

2 ,           ( ) ,  s s
s m sol

T T s t z t t t
t z

α∂ ∂
= < < <

∂ ∂
. (10) 

At the solid-liquid interface the temperature is 

 ( , ) ( , ) ,           ( ),  s m m solT z t T z t T z s t t t t= = = < <A  (11) 

and the energy balance can be expressed as 

 (1 ) ,           ( ),  s
s s L sl m sol

T T dsk k h z s t t t t
z z dt

ε φρ∂ ∂
− = − = < <

∂ ∂
A

A . (12) 

Based on the conservation of mass at the solid-liquid interface the shrinkage 

velocity, w , and the solid-liquid interface velocity, /ds dt , have the relationship 

 
1

s dsw
dt

ε ε
ε
−

=
−

A

A

. (13) 

2.1.1.3  Resolidification stage 

As the heat flux at the surface of the powder bed decreases, heating of the powder bed 

will decrease and melting will begin to slow and eventually stop.  The point of time at 

which melting of the powder bed stops is also the point at which solidification begins, 

solt .  At the time solt  the shrinkage reaches its maximum value and thus the location of 

the surface of the powder bed is unchanged during the solidification time period meaning 

that 0s const=  and 0w = .   

Taking these two factors into consideration the governing equations after 

solidification begins are  

 
2

02 ,           s ( ),  sol
T T z s t t t
t z

α∂ ∂
= > > >

∂ ∂
A A

A  (14) 

 0''( ),           ,  sol
Tk q t z s t t
z

∂
− = = >

∂
A

A  (15) 
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2

2 ,           ( ),  s s
s sol sol

T T z s t t t t
t z

α∂ ∂
= > = >

∂ ∂
 (16) 

 
2

2 ,           ( ) ( ),  r r
r sol sol

T T s t z s t t t t
t z

α∂ ∂
= < < = >

∂ ∂
 (17) 

 ( , ) ( , ) ,           ( ),  r m sT z t T z t T z s t t t= = = >A  (18) 

 (1 ) ,           ( ),  r
r L sl sol

T T dsk k h z s t t t
z z dt

ε φρ∂ ∂
− = − = >

∂ ∂
A

A A  (19) 

 ( , ) ( , ),           ( ),  r s sol solT z t T z t z s t t t t= = = >  (20) 

 ,           ( ),  sr
r s sol sol

TTk k z s t t t t
z z

∂∂
= = = >

∂ ∂
 (21) 

 ,           ( ),  sr
sol sol

TT z s t t t t
t t

∂∂
= = = >

∂ ∂
 (22) 

where the subscript r  denotes the resolidified part, which is simply the resolidified liquid 

phase A .  It is assumed that the properties of the resolidified region are the same as that 

of the liquid region (e.g., rk k= A ).   

2.1.2  Nondimensional governing equations 

By defining the following dimensionless variables 

 

( ) ( )

0
0

0

,  ,  ,  ,  ,  

,  ,  ,   ,  
(1 )

( ),   S ( )

sol m
sol m

p p p p p p p p p

p pp g s s
g s s

p p s p p sl Lp p

p pp p
m m i

sl L sl L

t t st z sZ S S
t t t t t t

tt w k kW K K Ste q
k k ht

c c
T T c T T

h h

τ τ τ
α α α

ααα
ε α α φ ρα

ρ ρ
θ

φ ρ φ ρ

= = = = = =

′′= = = = =
−

= − = −

 (23) 

the following dimensionless governing equations will be obtained.  
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2.1.2.1  Preheating stage 

 
2

2 ,                     0,  s s
s mZ

Z
θ θα τ τ
τ

∂ ∂
= > −∞ < <

∂ ∂
 (24) 

 
2

,              0,  
(1 )

s
m

s s

Ste e Z
Z K

τθ τ τ
ε

−∂ ⋅
= − = −∞ < <

∂ −
 (25) 

 ,                     0,  s Sc Zθ τ= − ≥ = −∞  (26) 

 ,                     ,  s Sc Zθ τ→ − →∞ > −∞  (27) 

2.1.2.2  Melting with shrinkage stage 

 
2

02 ,           S ,  m solW Z S
Z Z

θ θ θ τ τ τ
τ

∂ ∂ ∂
+ = < < < <

∂ ∂ ∂
A A A  (28) 

 0
0,           ,  m sol

dSW Z S
d

τ τ τ
τ

= = < <  (29) 

 
2

0,              ,  
(1 ) m sol
Ste e Z S

Z

τθ τ τ τ
ε

−∂ ⋅
= − = < <

∂ −
A

A

 (30) 

 
2

2 ,           ( )s s
s S Z

Z
θ θα τ
τ

∂ ∂
= < < ∞

∂ ∂
 (31) 

 ( , ) ( , ) 0,           ( ), s m solZ Z Z Sθ τ θ τ τ τ τ τ= = = < <A  (32) 

 1 ,           ( ),  
1

s
s m sol

s

dSK Z S
Z Z d
θ ε θ τ τ τ τ

ε τ
∂ − ∂

− = = < <
∂ − ∂

A A  (33) 

 0,                   S ( ),  
1

s
m sol

dSW Z S
d

ε ε τ τ τ τ
ε τ
−

= < < < <
−

A

A

 (34) 

2.1.2.3  Resolidification stage 

 
2

02 ,           S ( ),  solZ S
Z

θ θ τ τ τ
τ

∂ ∂
= < < >

∂ ∂
A A  (35) 
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2

0,              ,  
1 sol

Ste e Z S
Z

τθ τ τ
ε

−∂ ⋅
= − = >

∂ −
A

A

 (36) 

 
2

2 ,           ( ) , s s
s sol solS Z

Z
θ θα τ τ τ τ
τ

∂ ∂
= = < >

∂ ∂
 (37) 

 
2

sol2 ,           S( = ) ( ),  r r
solZ S

Z
θ θ τ τ τ τ τ
τ

∂ ∂
= < < >

∂ ∂
 (38) 

 ( , ) ( , ) 0,           ( ), r solZ Z Z Sθ τ θ τ τ τ τ= = = >A  (39) 

 ,           ( ),  r
sol

dS Z S
Z Z d
θ θ τ τ τ

τ
∂ ∂

− = = >
∂ ∂

A  (40) 

 ( , ) ( , ),           ( ), r s sol solZ Z Z Sθ τ θ τ τ τ τ τ= = = >  (41) 

 1 ,           ( ),  
1

s sr
s sol solK Z S

Z Z
ε θθ τ τ τ τ
ε

− ∂∂
= = = >

∂ − ∂A

 (42) 

 ,           ( ),  sr
sol solZ Sθθ τ τ τ τ

τ τ
∂∂

= = = >
∂ ∂

 (43) 

The solutions of all the above three stages will be obtained using the integral 

approximate method with second degree polynomial temperature profiles.   

2.2  The integral approximate solution 

When the surface of the powder bed is exposed to heat flux the heat will penetrate the 

surface and begin to conduct downward.  The depth to which the heat flux has penetrated 

is called the thermal penetration depth, δ .  Beyond this depth the temperature is equal to 

the initial powder bed temperature.  Therefore, the following two dimensionless 

boundary conditions at the dimensionless thermal penetration depth, / p ptδ αΔ = , are 

valid:  

 ( ) ,           ( ),  s Z Sc Zθ τ τ= − ≥ Δ > −∞  (44) 
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 =0,           ( ),  s Z
Z
θ τ τ∂

≥ Δ > −∞
∂

 (45) 

2.2.1  Solution for the preheating stage 

By integrating both sides of Eq. (24) with respect to Z  in the interval of (0, )Δ  one 

obtains 

 
00

1 s s

s

dZ
Z

θ θ
α τ

ΔΔ ∂ ∂
=

∂ ∂∫ . (46) 

Using Leibniz’s Rule to yield 

 
0 0

( )s
s sdZ dZθ θ θ

τ τ τ

Δ Δ∂ ∂ ∂Δ
= − Δ

∂ ∂ ∂∫ ∫  (47) 

and substituting Eq. (47) into Eq. (46) and simplifying results in  

 
00

1 ( ) s s
s s

s

dZ
Z Z
θ θθ θ

α τ τ

Δ

Δ

⎡ ⎤ ∂ ∂∂ ∂Δ
− Δ = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∫  (48) 

Applying the boundary conditions given by Eq. (27) and Eq. (44) and substituting Eq. 

(25) the result is  

 
2

0

1
(1 )s

s s s

Ste edZ Sc
K

τ

θ
α τ τ ε

Δ −⎡ ⎤∂ ∂Δ ⋅
+ =⎢ ⎥∂ ∂ −⎣ ⎦

∫  (49) 

Assuming that the temperature distribution profile is a second order polynomial of the 

form 

 2( , ) ,                     s s s s mZ A B Z C Zθ τ τ τ= + + <  (50) 

and solving for ,  ,s sA B  and sC  using the boundary conditions of Eqs. (27), (25), and (44) 

yields 

 
2 2 2

                    
2 (1 ) (1 ) 2 (1 )s s s

s s s s s s

Ste e Ste e Ste eA Sc B C
K K K

τ τ τ

ε ε ε

− − −⋅ ⋅Δ − ⋅ ⋅
= − + = =

− − Δ −
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Substituting these coefficients into Eq. (50) gives a temperature profile of  

 ( )
2

2( , ) ,           
2 (1 )s m

s s

Ste eZ Sc Z
K

τ

θ τ τ τ
ε

−⋅
= − + Δ − <

Δ −
 (51) 

which can be substituted into Eq. (49) to find  

 
2 22 6 se eτ τα

τ
− −∂ ⎡ ⎤Δ =⎣ ⎦∂

 (52) 

Integrating both sides of Eq. (52) from −∞  to τ  yields 

 
2 22 6 se e d

τ
τ τα τ− −

−∞

Δ = ∫  (53) 

The integral of the exponential function results in an error function term.  Therefore the 

thermal penetration depth in the powder bed is given by 

 [ ]2

3 1 ( ) ,           s me erfτπα τ τ τΔ = + <  (54) 

When melting begins at time mτ τ=  the temperature of the powder bed surface will be 

equal to the melting point of the low melting point powder, 0sθ = , i.e.,  

 
2

( 0, ) 0
2 (1 )

m
m

s m
s s

Ste eZ Sc
K

τ

θ τ τ
ε

−⋅ ⋅Δ
= = = = − +

−
 (55) 

The thermal penetration depth at the end of preheating can be obtained from Eq. (54) 

 [ ]2

3 1 ( )m
m s me erfτπα τΔ = +  (56) 

Equations (55) and (56) give two equations for two unknowns which can be solved to 

find  

 [ ]2

2 2 2

3 1 ( )
ln

4 (1 )
s m

m
s s

Ste erf
Sc K

πα τ
τ

ε

⎡ ⎤+
= ± ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (57) 
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Due to the error function expression, mτ  must be solved for in an iterative fashion.  If the 

values of mτ  are close to zero then they must be examined carefully to determine which 

value to use.   

2.2.2 Solution for the melting stage 

2.2.2.1 Loose powder region 

Although preheating ends when the temperature at the surface of the powder bed 

meets the melting point of the low melting point powder, the solid solution is still needed 

in the region from the solid-liquid interface to the thermal penetration depth where the 

temperature is elevated but melting has not begun.  The following procedure is nearly 

identical to the preheating solution, the principal change being the limits of integration.   

Integrating both sides of Eq. (31) gives 

 1 s s

Ss S

dZ
Z

θ θ
α τ

ΔΔ ∂ ∂
=

∂ ∂∫  (58) 

Applying Leibniz’s Rule to the left hand side of Eq. (58) yields  

 ( ) ( )s
s s s

S S

SdZ dZ Sθ θ θ θ
τ τ τ τ

Δ Δ∂ ∂ ∂Δ ∂
= − Δ +

∂ ∂ ∂ ∂∫ ∫  (59) 

which may be substituted into Eq. (58).  Applying the boundary conditions given by Eqs. 

(27), (44), and (32) gives 

 1 s
s

Ss S

dZ Sc
Z
θθ

α τ τ

Δ⎡ ⎤ ∂− ∂ ∂Δ
+ =⎢ ⎥∂ ∂ ∂⎣ ⎦

∫  (60) 

Assuming that the temperature distribution profile is a second order polynomial of the 

form 
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 2( , ) ( ) ( ) ,           s s s s mZ A B Z S C Z Sθ τ τ τ= + − + − >  (61) 

and solving for ,  ,s sA B  and sC using the boundary conditions given by Eqs. (27), (44), 

and (32) gives 

 2

20                    
( ) ( )s s s

Sc ScA B C
S S

−
= = =

Δ − Δ −
 

The assumed nondimensional temperature profile is thus 

 
2

( , ) 1s
ZZ Sc
S

θ τ
⎡ ⎤Δ −⎛ ⎞= −⎢ ⎥⎜ ⎟Δ −⎝ ⎠⎢ ⎥⎣ ⎦

 (62) 

Substituting Eq. (62) into Eq. (60) yields 

 6 2s S
S

α
τ τ
∂Δ ∂

= +
Δ − ∂ ∂

 (63) 

which describes the relationship between the location of the solid-liquid interface and the 

thermal layer thickness.  It is subject to the initial conditions  

 ,   m mτ τΔ = Δ =  (64) 

 0,   mS τ τ= = . (65) 

2.2.2.2  Liquid region 

Integrating both sides of Eq. (28) and applying Leibniz’s Rule gives  

 [ ]
0

0

0
0 0( ) ( ) ( ) ( )

Sl l
l l l l lS

S S

S SZ S S W S S
Z Z
θ θ θ θ θ θ θ

τ τ τ
∂ ∂ ∂∂ ∂

− = ∂ + − + −
∂ ∂ ∂ ∂ ∂∫  (66) 

Applying the boundary conditions given from Eqs. (30) and (32) and recalling Eq. (29) 

reduces Eq. (66) to  

 
2

0
1

S
l

l
SlS

Ste edZ
Z

τ θθ
τ ε

− ∂∂ ⋅
− =

∂ − ∂∫  (67) 



 18

At this point a temperature distribution of the form 

 
2

( , )l l l l
Z S Z SZ A B C

S S
θ τ − −⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (68) 

may be assumed, however, the boundary conditions of Eqs. (30) and (32) will not be 

enough more to determine all three coefficients of the polynomial.  We will find the third 

boundary condition by differentiating Eq. (32) and using the relation 

 0,           ( ),  l l
l md dZ d Z S

Z
θ θθ τ τ τ τ

τ
∂ ∂

= + = = >
∂ ∂

 (69) 

 0 ,           ( ),  l l
m

dZ Z S
Z d
θ θ τ τ τ

τ τ
∂ ∂

= + = >
∂ ∂

 (70) 

 0 l l

SS S

dZ
Z d
θ θ

τ τ
∂ ∂

= +
∂ ∂

 (71) 

 0 ,           ( ),  l l
m

dS Z S
Z d
θ θ τ τ τ

τ τ
∂ ∂

= + = >
∂ ∂

 (72) 

Substituting Eqs. (28) and (33) into Eq. (72) gives 

 
2 2

2

10
1

s l l l l l
s

S S S Ss S

K W
Z Z Z Z Z
θ θ ε θ θ θ

ε
⎛ ⎞∂ ∂ − ∂ ∂ ∂

= − + −⎜ ⎟∂ ∂ − ∂ ∂ ∂⎝ ⎠
 (73) 

The s

Z
θ∂
∂

 term can be replaced by a manipulation of Eq. (62) to give 

 
2 2

2

1 20
1

l l s l l

S Ss S

ScK W
Z S Z Z

ε θ θ θ
ε
⎛ ⎞− ∂ − ∂ ∂⎡ ⎤= − + − +⎜ ⎟ ⎢ ⎥− ∂ Δ − ∂ ∂⎣ ⎦⎝ ⎠

 (74) 

A combination of Eqs. (33), (34), and the derivative of Eq. (62) will be used to eliminate 

W , yielding the final boundary condition of  

 
2 2

2

1 20
1

l s s l l

S Sl S

ScK
Z S Z Z
θ ε θ θ

ε
⎛ ⎞∂ − ∂ ∂

= − − +⎜ ⎟∂ − Δ − ∂ ∂⎝ ⎠
 (75) 
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Now that there are three boundary conditions for the three unknown coefficients it is 

possible to find the temperature profile.  By substituting Eq. (68) into Eq. (32) it is clear 

that 0lA = .  Continuing in this manner, Eq. (68), differentiated one time, is substituted 

into Eq. (30) to obtain lB .  Keeping in mind the relation 0
1
1

s

l

S S S ε
ε

−
− = −

−
, which can be 

obtained by combining Eqs. (29) and (34) and integrating both sides gives   

 
2

12
1 1

s
l l

l l

S Ste eB C
τ ε

ε ε

− −− ⋅ ⋅
= +

− −
 (76) 

Substituting lA  and lB  into the assumed temperature profile in the liquid phase yields 

 
2 21( , ) 2

1 1
s

l l l
l l

S Ste e Z S Z SZ C C
S S

τ εθ τ
ε ε

−⎡ ⎤−− ⋅ ⋅ − −⎛ ⎞ ⎛ ⎞= + +⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (77) 

To find lC , substitute the differentials of the assumed liquid temperature profile into Eq. 

(74) to give  

 
2

2 2

1 2 20
1

l s s l l

l

B ScK B C
S S S S

ε
ε

−
= − − +

− Δ −
 (78) 

By substituting the known coefficients lB and collect terms for lC  a second order 

polynomial for lC  is obtained.   

 

( )
( )

( ) ( )
( )
( )

( ) ( )
( )
( )

2

2
2

2
2

2

2

2 2

2 2
2 2

2 2

1
0 4

1

11 4     2 4
1 1

12          
1 1

s
l

l

ss s
l

l l

ss

l l

C

ScKC Ste e S S
S

ScKSte e S Ste e S
S

τ

τ
τ

ε

ε

εε
ε ε

ε

ε ε

−

−
−

⎡ ⎤−
= −⎢ ⎥

−⎢ ⎥⎣ ⎦
⎡ ⎤−− −

+ + ⋅ +⎢ ⎥
Δ −− −⎢ ⎥⎣ ⎦

⎡ ⎤−− ⋅
+ + ⋅⎢ ⎥

Δ −− −⎢ ⎥⎣ ⎦

 (79) 
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The roots of this polynomial will give two possible temperature profiles, only one of 

which will be both concave down and satisfy the necessary boundary conditions.   

Now that the temperature distributions for both phases are known the next task is now 

to find the locations of the solid-liquid interface, S , and the thermal penetration depth, 

Δ .  To do this substitute Eq. (60) and Eq. (67) into Eq. (33) to obtain 

2

0

1 ,     ( ),   
1 1

S
s l

s l m
s s lS S

K Ste e dSdZ Sc dZ Z S
d

τεθ θ τ τ τ
α τ τ ε τ ε τ

Δ −⎡ ⎤⎡ ⎤− −∂ ∂Δ ∂ ⋅
+ − − = = >⎢ ⎥⎢ ⎥∂ ∂ − ∂ −⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫  (80) 

which can be integrated with respect to τ  over the interval ( , )mτ τ  and simplified to yield  

00

1( ) [ ( ) ( )]
1 2(1 )

m S
s l

s s m l m
s s sS S

K SteS dZ dZ Sc dZ erf erfε πθ θ θ τ τ
α ε ε

ΔΔ⎡ ⎤− −
= − + Δ −Δ − + −⎢ ⎥

− −⎢ ⎥⎣ ⎦
∫ ∫ ∫  (81) 

The integrals of the temperature profiles in Eqs. (51), (62), and (77) are 

 2 ( )
3s

S

dZ Sc Sθ
Δ

= −Δ∫  (82) 

 
0

2
3

m

s mdZ Scθ
Δ

= − Δ∫  (83) 

 ( )
( )

2

0

32
2

3

1 11 2
2 3 11

S
s s

l
lS l

dZ Ste e S C Sτ ε εθ
εε

− − ⎛ ⎞−
= ⋅ − ⎜ ⎟−− ⎝ ⎠

∫  (84) 

which are substituted into Eq. (81) to find 

 

( )

( ) ( )

22
2

2

110
2 1

12 2          1
3 3 1

1                    [ ( ) ( )]
3 2 1

s

l

s s
l

s l

s
m m

s s

S Ste e

ScKS C

ScK Ste erf erf

τ ε
ε

ε
α ε

π τ τ
α ε

−
⎡ ⎤−

= − ⋅⎢ ⎥
−⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞−
⎢ ⎥+ − − + ⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤
+ − Δ −Δ + −⎢ ⎥−⎣ ⎦

 (85) 



 21

The roots of this polynomial will be the possible values of S , only one of which will be 

both positive and real.  Integrating both sides of Eq. (63) with respect to τ  to obtain 

 62
m

s
m S d

S

τ

τ

α τΔ = Δ − +
Δ −∫  (86) 

the final necessary equation.  The right side of Eq. (86) must be evaluated using 

numerical integration.  By solving Eqs. (86) and (85) the location of the solid-liquid 

interface and the thermal penetration depth will be obtained.   

2.2.3  Solution for the resolidification stage 

As the heat flux at the surface of the powder bed decreases melting will slow down 

and eventually stop.  When melting stops the motion of the solid-liquid interface will 

reverse direction and begin to move back toward the surface of the powder bed as the 

melt pool solidifies.  Since melting has stopped there is no longer a density change in the 

powder bed and shrinkage of the powder bed has ceased. The location of the liquid 

surface during the solidification period is fixed, meaning that 0S const=  and 0W = .  

These factors will be taken into account during the solution of the solidification period. 

2.2.3.1  Loose powder region 

Integrating both sides of Eq. (37) and apply the boundary condition of Eq. (45) gives the 

integral equation in the loose powder   

 1

solsol

s
s

Ss S

dZ Sc
Z
θθ

α τ τ

Δ⎡ ⎤ ∂− ∂ ∂Δ
+ =⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
∫  (87) 

where solS  is the location of the solid-liquid interface at the time solτ τ= .   
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Assuming a second degree polynomial of the same form as Eq. (61) and applying the 

boundary conditions of Eqs. (44) and (45) to eliminate two of the three coefficients, we 

can solve for sB and sC easily if we assume for a moment that sA is known.   

 2

2( )           
( )

s s
s s

sol sol

A Sc A ScB C
S S

− + +
= =

Δ − Δ −
 (88) 

The temperature in the solid, unsintered powder then becomes 

 2
2

2( )( , ) ( ) ( ) ,           ( )
( )

s s
s s sol sol sol

sol sol

A Sc A ScZ A Z S Z S S Z
S S

θ τ τ− + +
= + − + − < < Δ

Δ − Δ −
(89) 

The thermal penetration depth can be found by integrating Eq. (87) once from solτ  to 

τ .  Using the assumed temperature distribution of Eq. (89) to evaluate the integral of sθ  

from solS  to Δ  one obtains 

 6( ) ,           
sol

s s s sol sol
sol final

s sol s

A Sc A S Scd
A Sc S A Sc

τ

τ

ατ τ τ τ τ+ + Δ
Δ = + < <

+ Δ − +∫  (90) 

2.2.3.2  Resolidified region 

The resolidified region is simply the portion of the melt pool that has resolidified.  By 

integrating Eq. (38) once and applying the boundary conditions of Eqs. (39) and 

solS const=  the integral energy equation for the resolidified region becomes 

 ,           
sol

sol

S
r r

r sol
S SS

dZ S Z S
Z Z
θ θθ

τ
∂ ∂∂

= − < <
∂ ∂ ∂∫  (91) 

By assuming a second degree polynomial for the temperature distribution and applying 

the boundary conditions of Eqs. (39), (41), and (42), the coefficients of the temperature 

profile in the resolidified region are 
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( ) ( )( )2

0
2 2 ( ) 1

1
2 ( ) 1

1

r

s s s s
r

sol sol l

s s s s
r

sol sol lsol

A
A K A ScB

S S S
A K A ScC

S S SS S

ε
ε

ε
ε

=
+ −

= +
− Δ − −

− + −
= −

Δ − − −−

 (92) 

where sA  is still unknown at this point.  The assumed temperature profile is thus 

 

( ) ( )( )
2

2

2 2 ( ) 1( ) ( )
1

2 ( ) 1               ( ) ,           ( )
1

s s s s
r

sol sol l

s s s s
sol

sol sol lsol

A K A ScZ Z S
S S S

A K A Sc Z S S Z S
S S SS S

εθ
ε

ε τ
ε

⎡ ⎤+ −
= + −⎢ ⎥− Δ − −⎣ ⎦

⎡ ⎤− + −
+ − − < <⎢ ⎥

Δ − − −−⎢ ⎥⎣ ⎦

(93) 

To determine the coefficient sA , the temperature at solZ S= , a combination of the 

sixth and final boundary condition, Eq. (43), and Eqs. (37) and (38) will be used to give  

 2 2r s sC Cα=  (94) 

By substituting the known values for rC and sC  into (94) one obtains 

 
2

2 2

2 (1 )( )( ) ( ) (1 )
( ) (1 ) 2 (1 )( )( ) ( ) (1 )

s s sol sol s sol l
s

sol l s s sol sol s sol l

ScK S S S Sc S SA
S K S S S S S

ε α ε
ε ε α ε
− − Δ − + − −

=
− Δ − − − − − Δ − − − −

 (95) 

the final of the six coefficients. 

2.2.3.3  Liquid region 

The solution for the liquid region of the solidification stage can be obtained in a 

manner similar to the solution for the liquid region of the melting stage.  Beginning with 

Eq. (35) , integrate both sides, use Leibniz’s Rule, and apply the boundary conditions 

given by Eqs. (36) and (39) to get the integral energy equation in the melt pool   

 
2

0
1

S
l

l
SlS

Ste edZ
Z

τ θθ
τ ε

− ∂∂ ⋅
− =

∂ − ∂∫  (96) 
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Assuming that the temperature distribution in the liquid has the form of a second 

degree polynomial and applying the boundary conditions of Eqs. (36) and (39) will give 

us  

 2

0

0

2 ( )
1

l

l
l

l

A

CSte eB S S S
S

τ

ε

−

=

− ⋅
= − −

−

 (97) 

which are different than those of the melting period because 0S is now constant.  To find 

lC  a procedure similar to that of the melting period will be used.  Combining Eqs. (72) 

and (35) will result in 

 
2

20 l l

S S

dS
Z d Z
θ θ

τ
∂ ∂

= +
∂ ∂

 (98) 

into which the assumed temperature profile in the liquid region, Eq. (68) will be 

substituted to find 

 2

20 l lB CdS
S d Sτ

= +  (99) 

By substituting the assumed temperature profiles into Eq. (40) the relation  

 l
r

BdS B
d Sτ

= −  (100) 

is obtained.  Combining Eqs. (99) and (100) and collecting terms for lC  gives the second 

degree polynomial  
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( )

2

2 2
2

2
2 0

2

0 0
0

2 2
2 2 2

2

4( )0

14          2 ( ) 4( ) 4
1 1

2 2 ( ) 1                     
11

l

s
l s s s

l l sol sol

s s s

l sol soll

S SC
S

S S S SSte eC S S A Sc K A
S S S

A K Sc ASte e Ste eS S Ste e S
S S S

τ

τ τ
τ

ε
ε ε

εε

−

− −
−

⎡ ⎤− −
= ⎢ ⎥

⎣ ⎦
⎡ ⎤− − −⋅

+ + − + + −⎢ ⎥
− − −Δ −⎢ ⎥⎣ ⎦

+ −− ⋅ ⋅
+ − + ⋅

− − −Δ− ( )21
s

l

ε
ε

⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦

(101) 

As in the melting stage, the roots of the lC  polynomial above will give two possible 

values for lC , only one of which will be appropriate.  The final temperature distribution 

in the liquid region is thus 

 
2 2

0
2( , ) ( )

1
l

l l
l

CSte e Z S Z SZ S S S C
S S S

τ

θ τ
ε

−⎡ ⎤− ⋅ − −⎛ ⎞ ⎛ ⎞= − − +⎢ ⎥ ⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (102) 

In order to find how S  changes with time, substitute the integral energy equations, Eqs. 

(91) and (96), into the energy balance equation at the resolidified part-liquid pool 

interface, Eq. (40).   

 
2

0
1

sol

sol

S S
r

r l
S lS S

dS Ste edZ dZ
d Z

τθ θ θ
τ τ τ ε

−∂ ∂ ∂ ⋅
= − − +
∂ ∂ ∂ −∫ ∫  (103) 

Using the appropriate temperature profiles, integrate Eq. (103) from solτ  to τ  and collect 

terms for S  to find the polynomial 
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one of the roots of which will be the location of the liquid-resolidified part interface.  

,l solC  is simply the value of lC  at the time solτ τ=  or  
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Now that all of the necessary components to describe the location of the solid-liquid 

interface, the location of the liquid surface, and the temperature distributions for each 

time period have been found a computer simulation can be developed to give the results 

of the model.   

2.3  Results and Discussion 

The solutions of the preheating, melting, and resolidification stages have been derived 

in terms of nondimensional parameters.  A computer code was written to simulate the 
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results of the model and the nondimensional values were varied to investigate the impact 

they would have on the sintering process.  In all of the following simulations the material 

properties of the low melting point powder are that of Aluminum and the material 

properties of the high melting point powder are that of Titanium.  The most important 

processing parameter is Stefan number.  It is proportional to 0 pq t′′  [see Eq. (23)] and it 

can be affected by a change in either laser power or laser pulse width.  The range of the 

Stefan number used in this study is obtained by using a peak heat flux on the order of 

6 -22 10  W m× ⋅  and a laser pulse width of less than 0.50 s .  The porosity of the liquid 

phase, ε A , was assumed to be 10%, meaning that not all of the interstitial gas in the 

powder bed is driven out during the melting stage.  The porosity of the unsintered 

powder, sε , was assumed to be 40%. The value of φ , the percentage of low melting 

point powder in the powder bed, was chosen to be 40%.  Resulting values of the 

nondimensional parameters can be found in the captions of the following figures.   
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Figure 2.3.1  The temperature profile within the powder bed at various times.  

( 0.6,  3.0,  0.40,  0.10,  0.40,  0.0081,  0.0081s s sSte Sc Kε ε φ α= = = = = = =A ) 

 

Figure 2.3.1 shows the temperature profile within the powder bed at various times 

during a simulation for the baseline values of the dimensionless parameters.  It shows an 

increase in temperature throughout the powder bed as the process continues.  The line 

corresponding to peakτ τ=  is the time at which the surface of the powder bed reaches its 

maximum temperature.  Note that the temperature profile lines for mτ τ≥  do not extend 

all the way to 0Z =  due to shrinkage of the powder bed.  The progression of the thermal 

penetration depth during the duration of the process can also be seen in the figure.   

Figure 2.3.2 shows the change in temperature at the surface of the powder bed for 

different values of the Stefan number.  The surface temperature increases as the heat flux 
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increases, with the peak surface temperature occurring after 0τ = , the time at which 

maximum heat flux occurs.  It can also be see in Fig. 2.3.2 that as the Stefan number 

increases the time at which melting begins decreases.  
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Figure 2.3.2  The surface temperature of the powder bed for various values of the 

Stefan number.  

( 3.0,  0.40,  0.10,  0.40,  0.0081,  0.0081s s sSc Kε ε φ α= = = = = =A ) 

 

Figure 2.3.3 shows the effect of the Stefan number, or the magnitude of the heat flux, 

on the locations of the solid-liquid interface, the liquid surface, and the thermal 

penetration depth.  Obviously as the Stefan number increases the melt pool depth 

increases and the temperature of the melt pool surface increases, as evidenced by Fig. 
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2.3.2.  A higher Stefan number will also result in more shrinkage, because more material 

will be melted, and a longer process time, because it will take longer for this increased 

quantity of melted powder to cool and resolidify. 
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Figure 2.3.3  The location of the liquid surface, the solid-liquid interface, and the 

thermal penetration depth for various of the Stefan number. 

( 3.0,  0.40,  0.10,  0.40,  0.0081,  0.0081s s sSc Kε ε φ α= = = = = =A ) 
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Figure 2.3.4  The effect of the subcooling parameter on the location of the liquid 

surface and the solid-liquid interface.  

( 0.5,  0.40,  0.10,  0.40,  0.0081,  0.0081s s sSte Kε ε φ α= = = = = =A ) 

 

Figure 2.3.4 shows the location of the liquid surface and the solid-liquid interface for 

the same Stefan number but different subcooling parameters.  For 4.0Sc =  the laser 

beam pass makes a relatively shallow melt pool as compared to the hotter powder bed of 

3.0Sc = .  For the subcooling parameter of 2.0Sc =  the melt pool is very deep because 

the laser does not have to do nearly as much preheating.  The higher the subcooling 

parameter, the greater the difference between the initial temperature of the powder bed 

and the melting point of the low melting point powder.  Thus the higher the subcooling 
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parameter the more heat flux is needed to melt the powder and the longer it takes for 

melting to begin, which is confirmed by Fig. 2.3.4.   
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Figure 2.3.5  The effect of the porosity of the unsintered powder on the location of 

the liquid surface and the solid liquid interface.  

( 0.5,  3.0,  0.10,  0.40Ste Sc ε φ= = = =A ) 

 

Obviously a powder bed that is very porous will experience a greater amount of 

shrinkage due to melting than one that is less porous, however, Fig. 2.3.5 shows that a 

very porous powder bed will also have a deeper melt pool and a longer process time.  

This is because as the porosity of the metal powder increases the effective thermal 

conductivity of the powder bed decreases.  A very porous powder bed will reach the end 
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of the preheating period faster than a less porous one, and a greater volume of powder 

bed will be sintered, because the lower thermal conductivity will keep more of the heat 

flux at the surface of the powder bed, essentially not letting the heat flux penetrate the 

powder bed as quickly as a densely packed powder bed.  This porosity will increase the 

process time significantly because in the model heat in the melt pool can only be lost via 

conduction of the heat deeper into the loose powder bed, not by radiation or convection at 

the surface.   
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Figure 2.3.6  The effect of the fraction of low-melting-point powder on the location 

of the liquid surface and the solid-liquid interface.  ( 0.40,  0.10sε ε= =A ) 
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Figure 2.3.6 shows the effect of a change in the fraction of low-melting point powder 

in the powder bed.  The figure shows that as the fraction of low-melting-point powder in 

the powder bed increases the process time increases and the amount of melted material 

increases.  This makes sense because if there is more low-melting-point powder in the 

powder bed then more material will be melted by the applied heat flux.  More melted 

material means that more latent heat must be dissipated into the unsintered powder after 

the temporal Gaussian heat flux has decreased, hence an increase in process time.   

 

2.4  Conclusion 

Melting and solidification in a subcooled powder bed with temporal Gaussian heat 

flux was investigated analytically.  It is clear that all process parameters have effects on 

the results of the SLS process but through nondimensionalization the number of 

independent parameters can be significantly reduced.  As the Stefan number is increased 

the melt pool depth is also increased as well as the temperature of the melt pool surface 

and the overall process time.  As subcooling of the powder bed increases more heat flux 

is needed to melt the powder, and thus the melt pool is shallower.  It was found that a 

very porous powder bed will reach the end of the preheating period faster than a less 

porous one, a greater amount of material will be sintered, and the total process time will 

also increase. An increase in the fraction of low-melting-point powder will mainly 

increase the process time.  The physical model and results of this investigation pave the 

way for further modeling of SLS processes with a pulsed laser. 
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Chapter 3.  Heat transfer in a single powder particle 

 

Heat conduction in a single subcooled powder particle subjected to temporal 

Gaussian heat flux from a laser beam will be modeled in this chapter.  The diameter of 

the metal powder particle is much smaller than the diameter of the laser beam, which is in 

turn much smaller than the final desired part.   

3.1  Physical model 

The analysis of a single particle can be extended to the powder bed level by using an 

assumption based upon the optical penetration depth of the laser beam.  Since the laser 

radiation penetrates the powder bed over a distance of several powder-sphere diameters, 

we can assume that multiple scattering of the radiation leads to a nearly homogeneous 

distribution of the heat flux within the optically penetrated layer.  This assumption leads 

to an almost normal incidence of the radiation on the surfaces of the grains in the 

underlying layers.  The physical model of melting and resolidification is shown in Fig. 

3.1.1.  Due to symmetry of the spherical particle in the θ  and φ  directions the model can 

be assumed to be one-dimensional in the r  direction.   
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Figure 3.1.1  The physical model. 
 

The initial temperature of the powder particle is well below its melting point.  The 

origin of time is chosen to be at the time at which the heat flux is at its maximum, thus 

the time dependent heat flux is 

 

2

2ln 2
" "

0( ) p

t

q t q e τ
−

=  (106) 

where 2 pτ  is the full laser pulse width at half of the maximum flux (FWHM), as opposed 

to the 2 pt  that was used in Chapter 2, the full width of the laser pulse at "
0

1 q
e

.   

The laser-powder grain interaction begins with the powder grain absorbing a 

significant amount of heat from the laser radiation.  The surface heat flux will reach its 

maximum at the time 0t = , after which the heat flux will begin to decrease.  During the 

process, the cool sphere interior acts as a heat sink by attempting to thermalize the 

temperature gradient that is building up within the powder sphere.  After the heat flux 

decreases to a negligible level, several pulse widths after the maximum flux occurs, the 
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grain finally thermalizes to a uniform temperature throughout the particle.  This uniform 

temperature is reached well before the next laser pulse occurs, and therefore the heat 

transfer process can be modeled as a recurrence of laser pulses, each of which raise the 

temperature of the spheres.  Essentially, the thermalized temperature of the powder 

particle from the previous pulse is the initial temperature of the particle when the next 

pulse begins.  In an actual SLS process, melting, and thus consolidation, of the powder 

bed would occur when the surface temperature of the sphere reaches the melting point of 

the material, driving the interstitial gasses from the powder bed.  This analysis, however, 

focuses only on the early time of the laser-powder particle interaction in order to find out 

what will happen before the surface of the powder reaches the melting point.   

This paper presents analysis of a one-dimensional model in spherical coordinates of 

the heat transfer undergone by a single particle in a powder bed subjected to laser heat 

flux.  Another single-particle analysis can be found in Fischer et al. [13].  It is assumed 

that the liquid phase is incompressible and the melting point of the metal powder is not 

affected by changes in pressure.  The radiation and convection from the surface of the 

particle are neglected, meaning that the excess heat built up on the surface of the particle 

must be dissipated in the form of conduction into the powder grain.  The simulations will 

stop when the surface temperature of the powder particle reaches the melting point of the 

powder.  This work forms a basis upon which melting and resolidification of the powder 

grain may be investigated.   
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3.1.1  Governing equations 

The heat transfer within the powder grain can be described as a pure conduction 

problem.  The heat conduction equation within the grain is 

 2
0 02

0

( ) ,     0
( )

r x x r
t r x x x
θ α θ∂ ∂ ∂⎛ ⎞= − ≤ ≤⎜ ⎟∂ − ∂ ∂⎝ ⎠

 (107) 

which is subject to the following initial and boundary conditions 

 00,     ,     x r tθ → → > −∞  (108) 

 00,     0 ,     x r tθ = ≤ ≤ → −∞  (109) 

 00,     x r
x
θ∂
= =

∂
 (110) 

The heat flux at the surface is governed by 

 "( ),     0,     sk q t x t
x
θ∂

− = = > −∞
∂

 (111) 

where "( )q t  is given by Eq. (106).   

3.2  The Integral Approximate Solution 

When the surface of the powder bed is exposed to heat flux the heat will penetrate the 

surface and begin to conduct downward.  The depth to which the heat flux has penetrated 

is called the thermal penetration depth, δ , beyond which the temperature is equal to the 

initial powder bed temperature.  Therefore, the following two boundary conditions are 

valid  

 ( , ) 0,      ( ),       x t x t tθ δ= ≥ > −∞  (112) 

 =0,      ( ),      x t t
x
θ δ∂

≥ > −∞
∂

. (113) 
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As the heat flux penetrates the surface of the particle the thermal penetration depth, 

δ , will increase.  Since the powder particle has a finite radius, it is certain that at some 

point during the simulation the thermal penetration depth will reach the center of the 

particle.  For this reason two separate solutions will be needed, one solution for 0rδ <  

and one for 0rδ = , both of which are included below.   

3.2.1 Solution for 0rδ <  

Integrating both sides of Eq. (107) with respect to x  in the interval of (0, )δ  yields  

 2 2
0 0

0 0

( ) ( )sr x dx r x
t x

δδ θ θα∂ ∂⎡ ⎤− = −⎢ ⎥∂ ∂⎣ ⎦∫  (114) 

Using Leibniz’s rule on the left hand side of Eq. (114) gives  

 2 2 2
0 0 0

0 0

( ) ( , ) ( , )( ) ( )sr x x t dx t r r x
t t x

δδ δ θθ θ δ δ α∂ ∂ ∂⎡ ⎤− − − = −⎢ ⎥∂ ∂ ∂⎣ ⎦∫  (115) 

Substituting Eqs. (111), (112), and (113) into Eq. (115), the integral energy equation 

becomes 
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Assuming that the temperature distribution is a second degree polynomial function of 

the form  

 2( , ) ( ) ( )x t A B x C xθ δ δ= + − + −  (117) 

and solving the unknown constants using the boundary conditions of Eqs. (111), (112), 

and (113), the temperature distribution in the heat affected zone becomes  
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Substituting Eq. (118) into Eq. (116) yields  
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which is subject to the initial condition  

 0,     tδ = = −∞  (120) 

Integrating Eq. (119) with respect to t  in the interval ( , )t−∞  one obtains 
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 (121) 

Only one of the roots of Eq. (121) will be both real and positive and this root will be the 

value of δ  for the particular time.  Eqs. (118) and (121) sufficiently describe the powder 

particle when 0rδ < .  During the simulation it will be necessary to monitor the value of 

δ  so that we may switch to the alternate solution when necessary.  It will also be 

necessary to monitor the temperature at the surface of the powder particle, ( 0, )x tθ = , so 

that we know when melting begins and the simulation ends. 

3.2.2 Solution for 0rδ =  

When δ  reaches the center of the powder particle the boundary conditions of Eqs. 

(112) and (113) will no longer be useful.  At this point in the preheating stage it will be 

necessary to assume a temperature profile of a form similar to that of Dombrovski [18]  
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where ( )cT t  is the temperature at the center of the sphere and ( )surfT t  is the temperature 

at the surface of the sphere.  By examining Eq. (122) it can be seen that the boundary 

condition of Eq. (110) is already satisfied.  Using the boundary condition of Eq. (111) to 

relate ( )cT t  and ( )surfT t  simplifies Eq. (122) to  
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This is the assumed temperature profile that will be used for the rest of the integral 

approximate solution.  The only unknown quantity in Eq. (123) is ( )cT t  so it is now 

necessary to find another equation with which to eliminate this parameter.  If one 

proceeds with the integral approximate solution of the as normal this equation will 

present itself.   

Integrating both sides of Eq. (107) with respect to x  in the interval of 0(0, )r  and 

applying Leibniz’s Rule yields  
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Substituting Eq. (111) into Eq. (124), the integral energy equation becomes 
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Substituting Eq. (123) into Eq. (125) yields  
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 42

which is subject to the initial condition 

 ( ) ,      c iT t T t tδ= =  (127) 

where tδ  is the time at which δ  reaches 0r , the center of the particle.  Eq. (126) can be 

integrated with respect to t  in the interval ( , )t tδ  to yield 
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 (128) 

Equation (128) can be rearranged to solve for ( )( )c iT t T−  which can then be substituted 

into Eq. (123) to find 
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(129) 

 

the equation that describes the temperature profile in the particle after 0rδ = .  As with the 

previous solution, it will be necessary to monitor the temperature at the surface of the 

powder particle, ( 0, )x tθ = , during the simulation so that we know when the melting 

stage begins.  Now that all the necessary components to describe the powder particle 

have been found a computer simulation can be developed to give the results of the model.    
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3.3  Results and discussion 

After solving the heat transfer problem in terms of various system parameters it was 

necessary to adapt this solution to use the parameters that describe common laser 

apparatuses.  This was done with the help of Fischer et al. [13].  From this paper the 

energy in one laser pulse is calculated with the equation  

 1 11av
pulse

rep

PRE
No f e
− ⎛ ⎞= ⋅ −⎜ ⎟

⎝ ⎠
 (130) 

where R  is the reflectivity of the powder grain, avP  is the average laser power, repf  is the 

repetition rate of the laser, and No  is the number of powder grains within the optically 

penetrated disk of powder bed.   
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Equation (131) gives the number of spheres within the disk of powder bed that is 

optically penetrated, pd  being the diameter of the laser spot and OPD  being the optical 

penetration depth.  Combining Eqs. (130) and (131) yields 

 ( ) 3
0

2

1 2(2 ) 11
3

bulk av
pulse

p powder rep

R r P
E

d OPD f e
ρ

ρ
− ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (132) 

the portion of the pulse energy that each particle in the affected region receives based on 

the previous assumption that multiple scattering leads to a homogenous distribution of 

energy within the optically penetrated region.  Now it is necessary to relate the factor "
0q , 

which is used in the boundary equations for this problem, to the pulse energy received by 
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the particles.  Recognizing that the total energy input to the powder particle by the laser 

pulse is  
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and realizing that Eq. (132) must be equal to Eq. (133) gives the final relation of "
0q  and 

the process parameters 
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Now that the heat transfer problem has been solved for in terms of various system 

parameters, and these system parameters have been related to real-life laser operating 

parameters, a computer code was written to simulate the results of the model.  The 

system parameters were then varied to investigate the impact they would have on the 

process.  In all of the following simulations the material properties are that of titanium.  

The baseline parameters used in the simulation were the experimental values found by 

Fischer et al. [13], which can be found in the captions of the following figures.  The most 

important processing parameter is clearly the maximum heat flux of the laser pulse, 

which is proportional to many of the necessary system parameters [see Eq. (135)].   

The effect of the superposition of many laser pulses can be seen in Fig. 3.3.1.  

Initially the powder particle is at room temperature.  When the laser pulse heats the 

particle, the surface temperature rises rapidly and then begins to fall as the heat flux 

decreases.  The temperature rise per pulse is uniform, with the temperature rising about 

125 K per pulse.  During the ninth pulse the surface temperature of the particle reaches 
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the melting point of the material, at which point melting begins and the heat transfer 

simulation is over.   
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Figure 3.3.1  The effect of multiple laser pulses on a single powder grain.  
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Figure 3.3.2 shows the switch from the 0rδ <  solution to the 0rδ =  solution.  

Previous to the dimensionless time 1.7τ =  the thermal penetration depth increases as the 

temperature at the surface rises and then begins to fall.  When δ  reaches the center of the 

particle the secondary solution begins, and we see the core temperature of the particle, the 

lower curve, begin to rise.  As the heat flux continues to decrease the two curves meet, at 

which point the powder particle has thermalized to a uniform temperature.  The style of 
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the upper plot of Fig. 3.3.2 will be the preferred visualization method for evaluating the 

effects of a change in a particular system parameter.   
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Figure 3.3.2  The excess temperature at the surface and core of the sphere in time 

and the corresponding thermal penetration depth.  
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Figure 3.3.3 shows the temperature profile within the sphere at various 

nondimensional times during a simulation for the baseline values of the system 

parameters.  It shows an increase in temperature throughout the powder bed as the 

process continues.  The line corresponding to 0.473τ =  is the time at which the surface 

of the powder particle reaches its maximum temperature.  Note that the temperature 
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profile lines for 0rδ <  do not initially extend all the way to 0 11x r mμ= =  but do after 

the transition to the alternate solution is made at the time δτ τ= .   
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Figure 3.3.3  The temperature profile within the powder particle at various times.  
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Figure 3.3.4 shows the surface temperature of the powder particle for various laser 

repetition rates.  Because the average power of the laser, avP , does not change with time, 

an adjustment of the repetition rate repf  greatly affects the maximum heat flux delivered 

to the particle per pulse.  A repetition rate of 5kHz delivers one large pulse in 200 sμ , a 

repetition rate of 15kHz delivers three medium sized pulses in 200 sμ , and a repetition 

rate of 25kHz delivers five small pulses in 200 sμ .  Since the total energy deposited 
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during the 200 sμ  is the same, the final temperature of the particle at the end of a 

particular period is the same for all repetition rates.  This behavior could be used to limit 

the temperature rise per pulse to a desired value, or perhaps vice versa.   
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Figure 3.3.4  The surface temperature of the sphere with respect to time for various 

laser pulse repetition rates.  ( 0 11 ,  75pr m nsμ τ= = ) 

 

Figure 3.3.5 demonstrates the same behavior as Fig. 3.3.4 on a smaller time scale.  As 

expected, the one large pulse raises the temperature of the powder grain surface quite a 

bit more than the smaller pulses, but the time at which surface temperature begins to rise 

is unaffected.  The time at which δ  reaches 0r  is also unchanged.  This is because the 
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time necessary to penetrate the particle depends only on 0r , pτ , and sα , which can be 

seen by examining Eq. (121).   
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Figure 3.3.5  The surface and center temperature of the sphere for different pulse 

repetition rates.  ( 0 11 ,  75pr m nsμ τ= = ) 

 

Figure 3.3.6 demonstrates the effect of the maximum heat flux on the heat transfer in 

the powder particle.  As was seen with a change in the repetition rate of the laser, an 

increase in maximum heat flux will result in a higher temperature rise on the surface of 

the particle, as well as a higher thermalized particle temperature after the laser pulse is 

finished.  The time at which the surface temperature begins to rise and the time at which 
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the particle is fully penetrated will not change when the surface heat flux varies, as 

mentioned previously.   
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Figure 3.3.6  The surface and core temperatures within the sphere for different 

values of maximum heat flux.  ( 0 11 ,  75pr m nsμ τ= = ) 

 

The effects of a change in the width of the laser pulse, pτ , are shown in Fig. 3.3.7.  

Since the energy per pulse is constant, even for a change in pτ , a wider pulse will 

essentially deliver its energy over a longer time period than that of a smaller pulse.  Since 

the energy per pulse is unchanged, the temperature rise per pulse will also be unchanged.  

Although the energy per pulse is unchanged, the magnitude of "
0q  must decrease for an 
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increase in pτ  [see Eq. (134)], which explains difference in peak temperatures displayed 

in Fig. 3.3.7.  Because of the presence of pτ  in Eq. (121), δτ  decreases when pτ  

increases.   
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Figure 3.3.7  The surface and core temperature of the powder particle for different 

pulse widths of the laser heating source.  ( 0 11 ,  5repr m f kHzμ= = ) 

 

In Fig. 3.3.8 one can see that when the radius of the powder particle decreases the 

time necessary for the heat flux to penetrate to the center of that particle noticeably 

decreases.  This makes perfect sense because a sphere that is very small will clearly take 

less time to heat than a sphere that is very large.  Figure 3.3.8 shows that as the radius of 

the heated sphere decreases the peak temperature at the surface of that sphere also 
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decreases.  This makes sense when considering that many more small spheres can fit into 

a particular volume than larger spheres.  If there are more spheres in one volume than in 

another, and both volumes are exposed to the same amount of laser heating, then the 

smaller spheres will have less energy per particle and therefore will be heated to a lesser 

degree.  Although a discrepancy exists where peak temperatures are concerned, the 

thermalized temperatures of the spheres are all the same.  This is because the larger  
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Figure 3.3.8  The effect of a change in particle radius on surface and core 

temperature of the powder grain.  ( 75 ,  5p repns f kHzτ = = ) 
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sphere gets hotter on the surface but has more inner material to heat.  The smaller sphere 

on the other hand does not get as hot on the surface, but heats its smaller interior to the 

same temperature as that of the larger sphere.  One can also see from the plot that a 

smaller sphere will thermalize faster than a larger sphere, which also makes sense.   
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Figure 3.3.9  The effect of a change in thermal diffusivity on surface and core 

temperature of the powder grain.  ( 0 11 ,  75 ,  5p repr m ns f kHzμ τ= = = ) 

 
Figure 3.3.9 shows the effect of a change in thermal diffusivity of the heated material.  

Thermal diffusivity is a function of the specific heat, density, and thermal conductivity of 

a material, so a change in thermal diffusivity represents a change in any of these 

properties.  In this particular simulation, all three of these properties are constants, 
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however it is still interesting to see how a change in thermal conductivity affects the 

temperature curves.  An increase in the thermal diffusivity results in a higher peak 

temperature at the surface of the sphere.  Since the input energy is the same for all three 

pulses, this effect could be caused by a decrease in specific heat of the metal, which 

would mean that less energy is needed to raise the temperature of the sphere, producing 

both the higher peak temperature and the higher thermalized temperature seen in Fig. 

3.3.9.  The figure also shows that the time necessary for the heat flux to completely 

penetrate the sphere does decrease with an increase in thermal diffusivity.   

3.4  Conclusion 

Heat transfer in a single powder particle subjected to nanosecond pulsed laser heating 

was investigated analytically.  The only process parameter that did not have an effect on 

the heating of the particle was the initial temperature.  This is because the change in 

temperature of the particle increases the same amount with each pulse, regardless of its 

previous temperature.  When the effects of many laser pulses are superpositioned upon 

each other the particle can be rapidly heated to its melting point, at which time the 

simulation is over.   

A change in the repetition rate of the laser affects mainly the maximum heat flux 

delivered to the particle per pulse.  An increase in maximum heat flux will result in a 

higher temperature rise on the surface of the particle, as well as a higher thermalized 

particle temperature after the laser pulse is finished.  The time at which the particle is 

fully penetrated will not change when the surface heat flux varies.  A change in the width 

of the laser pulse, pτ , will not affect the thermalized temperature, however, δτ  will 

decrease when pτ  increases.  When the radius of the powder particle decreases the time 
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necessary for the heat flux to penetrate to the center of that particle will also decrease.  A 

decrease in the radius of the sphere results in a decrease of the peak temperature at the 

surface of the sphere.  Although a discrepancy exists where peak temperatures are 

concerned, the thermalized temperatures of different-sized spheres are all the same.  An 

increase in the thermal diffusivity of the material results in a higher peak temperature at 

the surface of the sphere as well as a higher thermalized temperature.  The time necessary 

for the heat flux to completely penetrate the sphere does decrease with an increase in 

thermal diffusivity.   

 

Chapter 4.  Summary, conclusions, and future work 

 

4.1  Summary and conclusion 

Melting and resolidification of a one-dimensional, subcooled powder bed with 

infinite thickness subjected to temporal Gaussian heat flux was investigated analytically.  

The integral approximate solution was used to obtain solutions for preheating, melting 

with shrinkage, and resolidification.  An efficient computer code was then written to 

simulate the process and the effects of the system parameters were investigated.  It is 

clear that all process parameters have effects on the results of the SLS process but 

through nondimensionalization the number of independent parameters was significantly 

reduced.   

It was found that the Stefan number was the most important parameter in the 

simulation.  As the Stefan number increases the melt pool depth and melt pool surface 
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temperature also increase.  Due to the relatively large liquid pool the overall process time 

is increased significantly.  This is because the only way for the liquid pool to resolidify is 

by dissipating its heat into the powder bed, as heat loss from the surface is neglected.  As 

subcooling of the powder bed increases more heat flux is needed to melt the powder, and 

thus the melt pool is shallower.  It was found that a very porous powder bed will reach 

the end of the preheating period faster than a less porous one because the interstitial gas 

greatly decreases the thermal conductivity of the powder bed.  Because more heat is kept 

at the surface of the powder bed a greater amount of material will be sintered, therefore 

increasing the total process time.  An increase in the fraction of low-melting-point 

powder will mainly increase the process time because a large amount of liquid takes a 

long time to solidify.   

Heat transfer in a single powder particle subjected to nanosecond pulsed laser heating 

was also investigated analytically.  Because of symmetry the particle was considered to 

be one-dimensional.  The integral approximate solution was used to obtain the location of 

the thermal penetration depth.  Since the particle under consideration was of finite 

thickness, it was necessary to obtain two time-dependent solutions, one for 0rδ <  and 

one for 0rδ = .  A computer code was then written to simulate the results of the analysis 

and the process parameters varied to investigate their effects on the heat transfer within 

the powder sphere.  The only process parameter that did not have an effect on the heating 

of the particle was the initial temperature.  This is because the change in temperature rise 

of the particle is uniform for every pulse, regardless of its previous temperature.  If many 

laser pulses are simulated one after another then the particle can be rapidly heated to its 

melting point, at which time the heat transfer simulation is over.   
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As in the previous investigation, the heat flux input to the surface of the sphere was 

found to be the most important parameter.  A change in the repetition rate of the laser 

affects mainly the maximum heat flux delivered to the particle per pulse.  Since the 

average power of the laser does not change, an adjustment of the pulse frequency is the 

easiest way to change the maximum flux provided by the laser.  An increase in maximum 

heat flux will clearly result in a higher temperature rise on the surface of the particle, as 

well as a higher thermalized particle temperature after the laser pulse is finished.  The 

time at which the particle is fully penetrated does not change as the surface heat flux 

varies.  Only a change in 0r , pτ , or sα  will change when the thermal penetration depth 

reaches the center of the powder grain.  A decrease in the radius of the sphere in question 

results in a decrease of the peak temperature at the surface of the sphere.  Although a 

discrepancy exists where peak temperatures are concerned, the thermalized temperatures 

of different-sized spheres are all the same.  When the radius of the powder particle 

decreases the time necessary for the heat flux to penetrate to the center of that particle 

will also decrease.  A change in the width of the laser pulse, pτ , will not affect the 

thermalized temperature, however, δτ  will decrease when pτ  increases.  An increase in 

the thermal diffusivity of the material results in a higher peak temperature at the surface 

of the sphere as well as a higher thermalized temperature.  The time necessary for the 

heat flux to completely penetrate the sphere does decrease with an increase in thermal 

diffusivity.  The physical model and results of this investigation pave the way for further 

modeling of SLS processes with a pulsed laser. 
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4.2  Future work 

Since many SLS processes rely on empirical data the need for an accurate model is 

very real.  Although the previous work does provide insight into the important parameters 

of the SLS process there are still many more opportunities for continued research.  

Modeling of the particle-level interaction between a metal powder grain and a 

nanosecond laser could be continued.  The logical next step to the model presented in 

Chapter 3 is to analyze the melting and resolidification of the liquid skin on the surface of 

the individual powder grains.  The integral approximate solution could be used in a 

fashion similar to that of Chapter 2 to solve this problem.  With a model of this nature, 

the degree of partial melting in the powder bed could be easily predicted, and thus 

controlled, ultimately allowing for control of the local porosity in the final product.  Such 

a model could have applications not only in SLS research, but perhaps other melting and 

freezing applications, such as mushy-zone problems.   

The effect of vaporization of the metal powder particles on the powder bed is also a 

topic which requires looking into.  A certain amount of recoil pressure created by 

vaporization at the surface of the powder bed could serve to prevent the balling effect by 

disrupting the surface tension of the balls as they occur.  Too much recoil pressure, 

however, could blow the powder away before any consolidation can take place.   

Another possible opportunity for research is the integration of the two scales of SLS 

modeling presented above.  A particle level model contained within a powder bed level 

model could be a very powerful tool in the development of improved SLS techniques.  

The above work provides direction to those interested in doing research and experiments 
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in the SLS field.  In time a powerful heat transfer model will be developed so that the 

precision and quality of SLS processes can be accurately and quickly predicted. 

 

 

 



 60

REFERENCES 

[1] M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct selective laser 

sintering of metals, Rapid Prototyping Journal, 1 (1) (1995) 26 – 36. 

[2] S. Das, J. Beaman, M. Wohlert, D. Bourell, Direct laser freeform fabrication of high 

performance metal components, Rapid Prototyping Journal, 4 (3) (1998) 112 – 117. 

[3] P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, R. Glardon, Sintering 

of commercially pure titanium powder with a Nd:YAG laser source, Acta Materialia, 

51 (6) (2003) 1651 – 1662. 

[4] F. Abe, E. Costa Santos, Y. Kitamura, K. Osakada, M. Shiomi, Influence of forming 

conditions on the titanium model in rapid prototyping with the selective laser melting 

process, Proceedings of the Institution of Mechanical Engineers Part C – Journal of 

Mechanical Engineering Science, 217 (1) (2003) 119 – 126.   

[5] N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, 

M.B. Ignatiev, Balling processes during selective laser treatment of powders, Rapid 

Prototyping Journal, 10 (2) (2004) 78 – 87.  

[6] D.E. Bunnell, Fundamentals of selective laser sintering of metals, PhD thesis, 

University of Texas at Austin, Austin, TX, 1995.  

[7] T. Manzur, T. DeMaria, W. Chen, C. Roychoudhuri, Potential role of high power 

laser diode in manufacturing, SPIE Photonics West Conference, San Jose, CA, 1996. 



 61

[8] C. Konrad, Y. Zhang, B. Xiao, Analysis of melting and resolidification in a two-

component metal powder bed subjected to temporal Gaussian heat flux, International 

Journal of Heat and Mass Transfer, (2005) Article in Press. 

[9] Y. Zhang, A. Faghri, Melting of a subcooled mixed powder bed with constant heat 

flux heating, International Journal of Heat and Mass Transfer, 42 (5) (1999) 775 – 

788. 

[10] T. Chen, Y. Zhang, Analysis of melting in a mixed powder bed with finite thickness 

subjected to constant heat flux heating, Proceeding of ASME Summer Heat Transfer 

Conference, Las Vegas, NV, July 21-23, 2003. 

[11] R. Morgan, C.J. Sutcliffe, W. O’Neill, Experimental investigation of nanosecond 

pulsed Nd:YAG laser re-melted pre-placed powder beds, Rapid Prototyping Journal, 

7 (3) (2001) 159 – 172.   

[12] P. Fischer, V. Romano, H.P. Weber, S. Kolossov, Pulsed laser sintering of metallic 

powders, Thin Solid Films, 453-454 (2004) 139 – 144. 

[13] P. Fischer, N. Karapatis, V. Romano, R. Glardon, H.P. Weber,  A model for the 

interaction of near-infrared laser pulses with metal powders in selective laser 

sintering, Applied Physics A, 74 (4) (2002) 467 – 474.   

[14] R. Viskanta, Phase change heat transfer, in: G.A. Lane (Ed.), Solar heat storage: 

latent heat materials, CRC Press, Boca Raton, FL, 1983.   

[15] L.S. Yao, J. Prusa, Melting and freezing, Advances in Heat Transfer, 19 (1989), 1 – 

95.   



 62

[16] W-N Su, P. Erasenthiran, P.M. Dickens, Investigation of fully dense laser sintering of 

tool steel powder using a pulsed Nd: YAG (neodymium-doped yttrium aluminum 

garnet) laser, Proceedings of the Institution of Mechanical Engineers Part C-Journal 

of Mechanical Engineering Science, 217 (1) (2003) 127 – 138. 

[17] G.R. Hadley, Thermal conductivity of packed metal powders, International Journal of 

Heat and Mass Transfer, 29 (6) (1986) 909 – 920. 

[18] L.A. Dombrovsky, A simplified non-isothermal model for droplet heating and 

evaporation, International Communications in Heat and Mass Transfer, 30 (6) (2003) 

787 – 796.   




