
 1 Copyright © 2004 by ASME 

Proceedings of HT/FED 04 
2004 ASME Heat Transfer/Fluids Engineering Summer Conference 

July 11-15, 2004, Charlotte, NC 

HT-FED2004-56362 

ANALYSIS OF MELTING IN A SINGLE-COMPONENT METAL POWDER BED 
SUBJECT TO CONSTANT HEAT FLUX HEATING 

 
 

Bin Xiao and Yuwen Zhang 
Department of Mechanical and Aerospace Engineering 

University of Missouri-Columbia 
Columbia, MO-65211 

 
 

ABSTRACT 
 To model Selective Laser Sintering (SLS) of single-

component metal powders, melting of a subcooled powder bed 
with single-component metal powder is investigated 
analytically. Since laser processing of metal powder is a very 
rapid process, the liquid and solid phases of a partially molten 
powder particle may have different temperatures: the 
temperature in the liquid phase is higher than the melting point, 
and the temperature in the solid phase is below the melting 
point. Therefore, the local temperature of regions with partial 
molten particles is within a range of temperature adjacent to the 
melting point, instead of at melting point. In addition, the 
powder bed experiences a significant density change during 
melting. Therefore, melting of a metal powder bed can be 
modeled as a melting that occurs in a range of temperature with 
significant density change. The temperature distributions and 
locations of the various interfaces were obtained by solving the 
governing equations for solid, liquid and mushy zones in a one-
dimensional system using an integral approximate method. The 
effects of porosity, sub-cooling, dimensionless thermal 
conductivity of gas, and dimensionless heat flux on the surface 
temperature and locations of the interfaces were investigated. 

 
Nomenclature 

pc       specific heat, ( CkgJ / ) 

f      mass fraction of solid  

0f      mass fraction of solid on the heating surface 

sh       latent heat of melting or solidification, ( kgJ / )  

k         thermal conductivity  ( KmW ⋅/ ) 

K        dimensionless thermal conductivity 

''q       strength of line heat source ( mW / )  

0s      location of heating surface ( m ) 

ms      location of interface between constant porosity and   

            constant volume regions ( m ) 

s        location of interface between solid zone and mushy  

            zone ( m ) 

0S       dimensionless location of heating surface 

mS       dimensionless location of interface between constant  

            porosity and constant volume regions 

S         dimensionless location of interface between solid and  

            mushy zones 

T         temperature ( C  ) 

t          time ( s ) 

V        volume ( 3m ) 

w        velocity induced by shrinkage ( sm / ) 

W        dimensionless velocity induced by shrinkage 

z        vertical coordinate ( m ) 

Z        dimensionless vertical coordinate 

Greek symbol 

α        thermal diffusivity ( 2 /m s ) 

δ        thermal penetration depth ( m ) 
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θ     dimensionless temperature 

0θ       dimensionless temperature on the heating surface 

∆        dimensionless thermal penetration depth 

T∆       one-half of phase change temperature range 

ε        volume fraction of void (porosity for unsintered  

            powder), )/()( slglg VVVVV +++  

ρ        density ( 3/ mkg ) 

 τ        dimensionless time 

ϕ         volume fraction  

Subscripts 

eff        effective 

g         gas 

f         fusion 

m        mushy zone 

p         metal powder 

s          solid 

 
INTRODUCTION 

   Selective laser sintering (SLS) is a rapid prototyping 
technology that creates three-dimensional freeform objects 
directly from the CAD design. An object is created by 
selectively consolidating a powder with a scanning laser beam 
layer by layer [1-2]. SLS has the capability of producing 
structurally sound parts directly from polymer, nylon, metal, 
and ceramics. The feasibility of producing metal parts directly 
by SLS has been analyzed with different metal systems [3-5]. 
In contrast to amorphous powders, metals do not exhibit 
softening but have a generally much higher melting 
temperature. Therefore melting and resolidification are the only 
mechanisms feasible for SLS processing of metals [6-7].  

   In the laser sintering of metal powders, scanning is carried 
out line by line and the energy causes melting along a row of 
powder particles on the heating surface. The tensile traction on 
the melt is not sufficient to confine the molten track to tubular 
shape, thus leading to the formation of a series of spheres with 
diameters similar to that of the laser beam. This phenomenon is 
called “balling” and it causes poor quality final products. A 
two-component powder approach that uses mixture of two 
metal powders with significantly different melting points can 
be used to overcome balling effects. Many fundamentals of 
which method have been investigated in recent years [8-10]. 
Since the SLS two-component metal powder uses two different 
materials, the weaker physical properties of the two powders 

often prevail in the final products. To fabricate the fully 
densified part using single metal powder, Meiners et al. [11] 
proposed Selective Laser Powder Remelting (SLPR), which is 
evolved from SLS. The powder particles are completely melted 
and a tubular shape can be formed after a single line scanning 
of the laser beam. This process of directly fabricating parts 
using single component metal powder by complete remelting is 
also referred to as Direct SLS of metal powder [12-13], Direct 
Metal SLS (DMSLS) [14] and Direct Metal Laser Remelting 
(DNLR) [15]. The techniques described in Ref. [11-15] require 
a very high laser intensity since the entire layer must be melted.  

   The balling phenomenon that is encountered in the SLS of 
single-component metal powder can also be overcome by 
allowing only a fraction of the powder to be melted under 
irradiation of the laser beam [16]. The partially molten powder 
particles bond together due to solidification of the partially 
molten powder particles when the laser beam moves away. 
Since the laser processing of metal powder is a very rapid 
process, the liquid and solid phases of a partially molten 
powder particle may have different temperatures: the 
temperature in the liquid phase is higher than the melting point 
while the temperature in the solid phase is below the melting 
point. Therefore, the local temperature of the regions with 
partial molten particles is within a range of temperature 
adjacent to the melting point, instead of at melting point. 

   Fundamentals of melting phenomena and its applications 
have been intensively investigated during the past years and 
detailed reviews are available in the literature [17-18]. The 
distinctive feature of melting occurred in the SLS process is 
that the powder bed experiences a significant density change 
due to shrinkage. This paper models melting of single-
component metal powder bed as melting occurs in a range of 
temperature with significant density change. In this article an 
integral approximate method is used to solve the temperature 
distributions and locations of the various interfaces. Effects of 
porosity, sub-cooling and non-dimensional thermal 
conductivity will be investigated.  

PHYSICAL MODEL 
 
Figure 1 shows the physical model of melting of single-

component metal powder. A powder bed with a uniform initial 
temperature,

iT , below the melting point of the metal powder, 

fT , is in a half space, 0>z . Porosity of the powder bed 

during SLS is defined as the total volume of void, including the 
volumes of gas and liquid, relative to the total volume of the 
powder bed, i.e., lg ϕϕε += , where, 

gϕ is the volume 

fraction of the gas in the powder bed and lϕ is the volume 
fraction of the liquid. The variation of porosity during different 
melting stages, as will be explained below, is different.  
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                        Fig. 1 Physical model 
 

At time 0=t , a constant heat flux, "q , is suddenly applied 
to the surface of the powder bed. Since the initial temperature 
of the powder bed is below the melting point, no melting 
occurs and the problem is a pure conduction problem with 
boundary conditions of the second kind. The melting starts at 
time mt t=  when the surface temperature of the powder bed is 
at the lower limit of the phase change temperature range, 

TTf ∆− . There are two stages in the melting process. In the first 

melting stage (
1tttm <≤ ), a mushy zone including solid, 

liquid and gas is formed. The porosity during the first stage of 
melting remains constant while volume of the powder bed 
continuously changes because the gas is driven out by the 
liquid generated during melting. The second stage of melting 
starts from time 1t t=  when the volume fraction of gas on the 
heating surface becomes zero. The mushy zone during the 
second stage of melting is divided into two parts: an upper part 
whose volume remains constant because the surface of the 
powder bed moves with the same shrinking velocity, a lower 
part whose porosity remains constant as it happens in the first 
stage. In addition, the following assumptions are made: 

(1) The thermal properties of the powder are the same for  
      both solid and liquid phases.   
(2) The initial distribution of the volume fraction of the  
      powder is uniform in the bed. 

 
During preheating  

During preheating, pure conduction heat transfer occurs in 
the powder bed. The energy equation and corresponding initial 
and boundary conditions for the preheating problems are 
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where 

sk is the effective thermal conductivity in the powder 
bed [9]. 
 
The first melting stage                         

When melting first starts, the whole powder bed is divided 
into two parts: one is the mushy zone with constant porosity 
and the other is unsintered zone. Energy and continuity 
equations in the mushy zone are  
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The degree of melting in the mushy zone can be measured 
by solid fraction, f ,which is related to the local temperature. It 
can be expressed as: 
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According to the definition of the solid fraction of solid in 
the mushy zone, f  can be written as 
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In the first melting stage, eq. (7) can be simplified as 
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Neglecting the contribution of density, heat capacity and 
conductivity of gas, eq. (4) can be simplified as 
          

t
f

fc
h

z
T

fzf
T

w
zf

T
t p

slm
p

mm

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ 11α       

                                              )()(0 tszts << , 1tttm <<           (9) 
where subscript P  represents the property of powder material. 
       Likewise eq. (5) becomes 
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Equations (9-10) are subjected to the following boundary 
conditions   
          '')1( q
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k m
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Energy balance at the interface of solid and mushy zone 
interface is 
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The energy equation in the unsintered zone is 
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which is subjected to the following boundary conditions  
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The second melting stage 
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When 0=gϕ , the melting comes into the second stage, 

Governing equation and boundary conditions in the lower part 
of mushy zone are the same as those in the first melting stage. 
According to eq. (8), solid fraction, f , at the interface of upper 
and lower parts equals to ε−1  because 0=gϕ at this interface. 

Therefore, the temperature at interface between the upper and 
lower parts can be obtained by eq. (6), i.e., 

 TTT fm ∆−+= )12( ε             )(0 tsz = ,
1tt >              (17) 

Energy equation in the upper part of mushy zone can be 
simplified as  
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which is subjected to the following boundary conditions 
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The energy balance at the solid and mushy zone interface 
is  
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NON-DIMENSIONAL GOVERNING EQUATIONS 
Introducing the following dimensionless variables:   
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the non-dimensional governing equations and boundary 
conditions can be obtained. 
 
Preheating Stage 
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The first melting stage 
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where 0f  is the mass fraction of solid on the surface of 
powder bed. 
 
The second melting stage   
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INTEGRAL APPROXIMATE SOLUTION        
 
Preheating       

To solve the preheating problem, the dimensionless 
thermal penetration depth is introduced, i.e. "// qhslpp ραδ=∆ , 

where δ  is the thermal penetration depth beyond which the 
temperature of the powder bed is not affected by the surface 
heating. Integrating the heat-conduction eq. (23) with respect to 
Z in the interval of ),0( ∆ , one obtains 
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Assuming that the temperature distribution is a second-
order polynomial function and applying the boundary 
conditions, one obtains 
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Substituting eq. (48) into eq. (46), one gets   
              2/1)6( τsK=∆                                                    (49) 
Melting occurs when the surface temperature reaches the 

lower limit of melting temperature range, ms θθ ∆−= .The 
corresponding thermal penetration depth and the duration of the 
preheating can be obtained, i.e.,                               
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Then the dimensionless temperature distribution in the 
unsintered zone at time mτ  are found from 
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The first melting stage  
At the beginning of melting process, the interface between 

mushy zone and unsintered zone moves in the positive axial 
direction of z  and the surface of the powder bed moves in the 
same direction due to shrinkage. At the same time, the thermal 
penetration depth continuously increases.  

Integrating eq. (31) in the interval of ),( ∆S , the integral 
equation of  solid phase is obtained, 
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Assuming the temperature distribution in the solid phase is 
a second-order polynomial function and determining the 
constants in the polynomial function yields  
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Substituting eq. (55) into eq. (53), one obtains 
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Integration of eq. (27) from 
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Integration of eq. (26) from
mS to S  with respect to Z , 
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The expression of solid fraction, f , as a single value of 
temperature in the mushy zone, eq. (6), is difficult to be used to 
get the solution of eq. (59) because integration in eq. (60) is 
hard to obtain. The effect of linear distribution of solid fraction 
in the mushy zone using integral method was investigated by 
Tien and Geiger [19] and no significant effect on the result was 
found. For the sake of simplicity, it is assumed that the inverse 
of solid fraction is a linear function in the mushy zone, i.e., 
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It is assumed that the temperature distribution in the mushy 
zone is 
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where 0θ  is the dimensionless temperature on the heating 
surface of the powder bed. Coefficients 

2,10 , AAA  can be 

determined using the boundary conditions specified by eqs. 
(28-30).                                      

Substituting eq. (62) into eq. (57), one obtains 
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Substituting eqs. (62-63) into eq. (59), one obtains 

0 0 01 2
0

0

1 ln
( )

2 3 1

m m m

m
m

A Ad A S S
d

θ θ θ
θ θ θ

θτ
θ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∆ ∆ ∆
− + + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎜ ⎟+ + + −⎢ ⎥⎜ ⎟∆
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

       
0 0

0

(1 ) ln
2 ( ) 1

11

m m

s i m
m

m

KdS
d S

θ θ
θ θ θ θ

θ
θ τ ε

θ

⎛ ⎞⎛ ⎞∆ ∆
+ −⎜ ⎟⎜ ⎟

+ ∆⎝ ⎠⎜ ⎟+ ∆ − = +⎜ ⎟∆ ∆ − −−⎜ ⎟⎜ ⎟
⎝ ⎠

       (65) 

The initial conditions for eqs. (56), (64), and (65) are 
                     .0)( =mmS τ                                                (66) 
                     .0)( =mS τ                                                    (67) 
     )1)((2)( εθθτ −∆+−=∆=∆ mismm K                              (68) 
By using Runge-Kutta method we can get the solutions of 

eqs. (56),(64) and (65). 
 
The second melting stage 

The governing equation and boundary conditions in the 
unsintered zone are the same as those in the first melting stage, 
eq. (55) and eq. (56) still describe the temperature distribution 
and location of the interface between mushy zone and un-
sintered zone in the second melting stage. 

As to the lower part of mushy zone, equations (57-61) 
gained in the mushy zone of the first melting process are still 
applicable. Using the similar method, we assume that  
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Coefficients

2,10 , BBB  can be determined using the boundary 

conditions specified by eqs. (40-42). 
 Substituting eq. (69) into eq. (57), one obtains 
                    SSS m −= 0

2
ε

                                              (71) 

 Substituting eqs. (69-70) into eq. (59), one obtains                                                                                                                                            
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As to the upper part of mushy zone, since the entire layer 
moves with velocity 0w , the layer is static from the coordinate, 

'z , which moves with velocity 0w . Introducing the following 
variable transformation,  
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eqs. (34-36) can be written as 
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The exact solution of eqs. (75-77) is [20] 
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Changing eq.(78) back to the Z coordinate and Substituting 

it into eq. (37), we get                      
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Equations (56),(71),(72),(79) can be solved by the Runge-

Kutta method with the initial conditions gained from the first 
melting stage. 

RESULT AND DISCUSSION      
Porosity, subcooling, dimensionless thermal conductivity 

and the temperature range of melting play significant roles in 
the surface temperature, locations of the different interfaces of 
the powder bed. 

The effect of the initial porosity in the powder bed on the 
surface temperature during the melting process is shown in Fig. 
2. It can be seen that the surface temperature increases with the 
increasing porosity in the powder bed because the effective 
thermal conductivity decreases with the increasing volume 
fraction of the gas. Figure 3 shows the interface locations 
corresponding to the same conditions of Fig. 2. In the first 
melting stage, 

0SS −  increases with the increasing time, which 
means S  moves down faster than

0S . In the second melting 
stage, the moving velocity of S  decreases first and then moves 
at the velocity close to that in the first melting stage. At the 
same time 

mS  moves down significantly faster than 
0S . Thus 

0SS m − becomes larger while 
mSS −  becomes smaller. 
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       Fig.2 Effect of porosity on the surface temperature   
                                          ( 02.0=∆ mθ ) 
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       Fig.3 Effect of porosity on the interface locations  
                                        ( 02.0=∆ mθ ) 
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       Fig.4 Effect of porosity on the surface temperature  
                                                         ( 05.0=∆ mθ ) 



 7 Copyright © 2004 by ASME 

 τ0.00 .02 .04 .06 .08 .10 .12

S 0 
,S m

 ,S

0.00

.02

.04

.06

.08

.10

εs=0.4 εs=0.264εs=0.35

θ i=-1.2

Κg=3.7x10-4

S0

Sm

S

 
Fig.5 Effect of porosity on the interface locations  
                                           ( 05.0=∆ mθ ) 

 
Figures 4-5 show the effect of initial porosity on the 

heating surface temperature, interface locations when 
05.0=∆ mθ . Compared with Figs. 2-3 which showed the 

effects of initial porosity when 02.0=∆ mθ , it can be seen that 
with the increasing 

mθ∆  the preheating time becomes shorter 
because the powder begins to melt at a relatively lower 
temperature, which is earlier to be reached in the preheating 
process. The moving velocities of interfaces become smaller.  
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        Fig.6 Effect of subcooling on the surface temperature  
                                                  ( 02.0=∆ mθ )            
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Fig.7 Effect of subcooling on the interface locations  
                                              ( 02.0=∆ mθ ) 

 
Figure 6 shows the effect of initial subcooling of the 

powder bed on the heating surface temperature. It can be seen 
that the duration of preheating is increased with increasing 
subcooling value. The surface temperature after melting is 

lower for larger initial subcooling value. Figure 7 shows the  
interface locations corresponding to the condition of Fig. 6. As 
can be seen, the existence of initial subcooling reduces the 
moving velocities of interfaces substantially. Thickness of the 
layer between 

0S  and 
mS  remains almost unchanged while 

thickness of the layer between 
mS  and S  is increased with 

increasing subcooling value. 
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       Fig.8 Effect of subcooling on the surface temperature  
                                                      ( 05.0=∆ mθ )            
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Fig.9 Effect of subcooling on the interface locations  
                                              ( 05.0=∆ mθ ) 

 
Figures 8-9 show the effect of initial subcooling on the 

heating surface temperature, interface locations when 
05.0=∆ mθ . Compared with Figs. 6-7 which show the effects 

of initial subcooling when 02.0=∆ mθ , it can be seen that with 
the increasing 

mθ∆  temperature on the heating surface changes 
more quickly, the interface locations move down faster.  

 
Figure 10 shows the effect of dimensionless thermal 

conductivity of the gas on the heating surface temperature. It 
can be seen that the preheating time increases significantly 
when the thermal conductivity of the gas is increased. The 
surface temperature is slightly lower for higher thermal 
conductivity of gas.  

 
Figure 11 shows the effect of thermal conductivity on the 

interface locations corresponding to the conditions of Fig. 10. 
As can be seen, the moving velocities of the interfaces decrease 
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with the increase of dimensionless thermal conductivity of gas. 
And the thickness of layer between 

0S and 
mS remains almost 

unchanged while the thickness of layer between 
mS and S is 

increased with the increase of the thermal conductivity. 
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        Fig.10 Effect of thermal conductivity on the surface  
                    temperature ( 02.0=∆ mθ ) 
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Fig.11 Effect of thermal conductivity on the interface  
           locations ( 02.0=∆ mθ ) 

 
Figures 12-13 show the effects of dimensionless thermal 

conductivity of the gas on the heating surface temperature, 
interface locations when 05.0=∆ mθ . Compared with Figs. 10-
11 which show the effects of dimensionless thermal 
conductivity of the gas when 02.0=∆ mθ , the preheating time 
decreases with the increase of 

mθ∆ , the interface locations 
move down more slowly. 

 

CONCLUSION       
 Melting of single-component metal powder bed subjected 

to constant heat flux heating is investigated analytically. Effect 
of shrinkage and effect of volume fraction of gas during the 
melting process are taken into account in the model presented 
in this article. It shows the porosity of the powder bed, 
subcooling parameter and dimensionless thermal conductivity 
and the temperature range of melting play important roles in 
the surface temperature, the locations of the interfaces and their 

motions. Under the condition of fixed range of melting 
temperature, the initial porosity of the powder bed accelerates 
the melting process and increases the surface temperature. The 
initial subcooling of the powder bed decelerates the melting 
process and decreases the surface temperature and decelerates 
the driving process of gas in the mushy zone. It also shows that 
the thermal conductivity of the gas slows down the melting 
process, decreases the heating surface temperature. 
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        Fig.12 Effect of thermal conductivity on the surface  
                     temperature ( 05.0=∆ mθ ) 
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Fig.13 Effect of thermal conductivity on the interface  
            locations ( 05.0=∆ mθ ) 
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