Journal Articles

  1. Dong, H., Wen, B., Zhang, Y., and Melnik, R., 2017, “Low Thermal Conductivity in Si/Ge Hetero-Twinned Superlattices,” RSC Adv., 7, pp. 29959-29965 (PDF) [Google Scholar].
  2. Zhou, B., Yang, M., Li, Z., Wang, Z., and Zhang, Y., 2017, “ Numerical Simulations of Forced Convection Across a Single Tube to Evaluate Applicability of the DNS, LES and RSM Methods,” Appl. Therm. Eng., 123, pp. 123-130 (PDF) [Google Scholar].
  3. Dong, H., Wen, B., Zhang, Y., and Melnik, R., 2017, “The Thermal Conductivity of Diamond/SiC Nano-Polycrystalline and Phonon Scattering at Interfaces,” ACS OMEGA, 2(5), pp. 2344–2350 (PDF) [Google Scholar].
  4. Mao, Y., Zhang, B., Chen, C.L., and Zhang, Y., 2017, “Hybrid Atomistic-Continuum Simulation of Nanostructured Defects-Induced Bubble Growth,” J. Heat Transfer, 139(10), 104503 (PDF) [Google Scholar].
  5. Ling, C., Min, C., Wang, Y., and Zhang, Y., 2017, “Economic Evaluation of Reverse Osmosis Desalination System Coupled with Tidal Energy,” Frontiers in Energy, DOI: 10.1007/s11708-017-0478-2 (PDF).
  6. Afrin, N., and Zhang, Y., 2017, “Uncertainty Analysis of Thermal Damage to Living Biological Tissues by Laser Irradiation Based on a Generalized Duel-Phase Lag Model,” Numer. Heat Transfer, Part A., 71(7), pp. 693-706 (PDF) [Google Scholar].
  7. Mohammadian, S.K., and Zhang, Y., 2017, “Cumulative Effects of Using Pin Fin Heat Sink and Porous Metal Foam on Thermal Management of Lithium-ion Batteries,” Appl. Therm. Eng., 118, pp. 375-384 (PDF) [Google Scholar].
  8. Shi, H., Fan, S., and Zhang, Y., 2017, “Design and Optimization of Slit-Resonant Beam in a MEMS Pressure Sensor Based on Uncertainty Analysis,” Microsyst. Technol., doi: 10.1007/s00542-017-3310-3 (PDF) [Google Scholar].
  9. Zhang, B., Mao, Y., Chen, C.L., and Zhang, Y., 2017, “A Hybrid Atomistic-Continuum Simulation of Nucleate Boiling with Domain Re-decomposition Method,” Numer. Heat Transfer, Part B, 71(3), pp. 217-235 (PDF) [Google Scholar].
  10. Yang, M., Ding, Z., Lou, Q., Wang, Z., and Zhang, Y., 2017, “Lattice Boltzmann Method Simulation of Natural Convection Heat Transfer in Horizontal Annulus,” J. Thermophys. Heat Transfer, 31(3), pp. 700-711 (PDF) [Google Scholar].
  11. Pouryoussefi, S.M., and Zhang, Y., 2017, “Analysis of Chaotic Flow in a 2D Multi-Turn Closed-Loop Pulsating Heat Pipe,” Appl. Therm. Eng., DOI: 10.1016/j.applthermaleng.2017.01.097 [Google Scholar].
  12. Qi, X., Yang, M., and Zhang, Y., 2017, “Numerical Analysis of NOx Production under the Air Staged Combustion,” Frontiers in Heat and Mass Transfer, 8, p. 3 (PDF) [Google Scholar].
  13. Ji, P., and Zhang, Y., 2017, “Multiscale Modeling of Femtosecond Laser Irradiation on Copper Film with Electron Thermal Conductivity from ab initio Calculation,” Numer. Heat Transfer, Part A, 71(2), pp. 128-136 (PDF) [Google Scholar].
  14. Xi, H., Li, M.J., He, Y.L., Zhang, Y., 2017, “Economical Evaluation and Optimization of Organic Rankine Cycle with Mixture Working Fluids Using R245fa as Flame Retardant,” Appl. Therm. Eng., 113, pp. 1056-1070 (PDF) [Google Scholar].
  15. Pouryoussefi, S.M., and Zhang, Y., 2017, “Numerical Investigation of Icing Effects on Vortex Shedding in a Cascade of Stator Blades,” Heat Transfer Research, DOI: 10.1615/HeatTransRes.2017017272 [Google Scholar].
  16. Li, Z., Yang, M., He, Y.L., and Zhang, Y., 2017, “Mass Balance in Lattice Boltzmann Method with Dirichlet Velocity Boundary Condition,” Heat Transfer Research, DOI: 10.1615/HeatTransRes.2016014588 [Google Scholar].
  17. Ji, P., and Zhang, Y., 2017, “Electron-Phonon Coupled Heat Transfer and Thermal Response Induced by Femtosecond Laser Heating of Gold,” J. Heat Transfer, 139(5), 052001 (PDF) [Google Scholar].
  18. Shi, H., Fan, S., and Zhang, Y., 2017, “Analysis of Phase Drift Based on Uncertainty Analysis in Electro-Thermal Excited MEMS Resonant Sensor,” Microsyst. Technol., 23(6), pp. 2043-2053 (PDF) [Google Scholar].

    2016 (24 Papers)

  19. Mohammadian, S.K., and Zhang, Y., 2016, “Effects of Size of Microchannels on Thermo-Electrical Performance of an Internally Cooled Li-Ion Battery Cell,” J. Electrochem. En. Conv. Stor., 13(4), 044501 (PDF) [Google Scholar].
  20. Ma, X., Yang, M., and Zhang, Y., 2016, “Analysis of Combustion Mechanism and Combustion Optimization of a 300MW Pulverized Coal Boiler,” Frontiers in Heat and Mass Transfer, 7, p. 36 (PDF) [Google Scholar].
  21. Talkhoncheh, F.K., Xu, H.T., Wang, Z., Yang, M., and Zhang, Y., 2016, “Numerical Simulation of Transient Forced Convection in a Square Enclosure Containing Two Heated Circular Cylinders,” Int. J. Numer. Methods Heat Fluid Flow, 26(1), pp. 307-327 (PDF) [Google Scholar].
  22. Pouryoussefi, S.M., and Zhang, Y., 2016, “Nonlinear Analysis of Chaotic Flow in a Three-Dimensional Closed-Loop Pulsating Heat Pipe,” J. Heat Transfer, 138(12), 122003 (PDF) [Google Scholar].
  23. Mohammadian, S.K., and Zhang, Y., 2016, “Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Nonmetal Foams,” J. Heat Transfer, 138(11), 114502 (PDF) [Google Scholar].
  24. Rassoulinejad-Mousavi, S.M., Mao, Y., and Zhang, Y., 2016, “Evaluation of Copper, Aluminum and Nickel Interatomic Potentials on Predicting the Elastic Properties,” J. Appl. Phys., 119, 245102 (PDF) [Google Scholar]
  25. Zhang, K., Wang, L.B., Zhang, Y., 2016, “Improved Finite Difference Method with a Compact Correction Term for Solving Poisson's Equations,” Numer. Heat Transfer, Part B, 70(5), pp. 393-405 (PDF) [Google Scholar].
  26. Afrin, N., Mao, Y., and Zhang, Y., Chen, J.K., Ritter R., Lampson, A., Stohs, J., 2016, “Multicomponent Gas-Particle Flow and Heat/Mass Transfer Induced by a Localized Laser Irradiation on a Urethane-Coated Stainless Steel Substrate,” Frontiers in Heat and Mass Transfer, 7, p. 7 (PDF) [Google Scholar].
  27. Yang, Y., Chen, Z., Zhang, Y., 2016, “Melt Flow and Heat Transfer in Laser Drilling,” Int. J. Therm. Sci., 107, pp. 141-152 (PDF) [Google Scholar].
  28. Li, L., Ji, P., and Zhang, Y., 2016, “Molecular Dynamics Simulation of Condensation on Nanostructured Surface in a Confined Space,” Appl. Phys. A-Mater, 122, p. 496 (PDF) [Google Scholar].
  29. Shen, C., Yang, M., Zhang, Y., and Li, Z., 2016, “Effects of Slotted Structures on the Nonlinear Characteristics of Natural Convection in a Cylinder with an Internal Concentric Slotted Annulus,” Numer. Heat Transfer, Part A, 70(5), pp. 447-459 (PDF) [Google Scholar].
  30. Wang, J., Yang, M., He, Y.L., and Zhang, Y., 2016, “Oscillatory Double-Diffusive Convection in a Horizontal Cavity with Soret and Dufour Effects,” Int. J. Therm. Sci., 106, pp. 57-69 (PDF) [Google Scholar].
  31. Ji, P., and Zhang, Y., 2016, “Ab Initio Determination of Effective Electron-Phonon Coupling Factor in Copper,” Phys. Lett. A, 380(17), pp. 1551-1555 (PDF) [Google Scholar].
  32. Afrin, N., Zhang, Y., and Chen, J.K., 2016, “Uncertainty Analysis of Melting and Resolidification of Gold Film Irradiated by Nano- to Femtosecond Lasers Using Stochastic Method,” J. Heat Transfer, 138(6), p. 062301(PDF) [Google Scholar].
  33. Rajabifar, B., Seyf, H.R., Zhang, Y., Khanna, S.K., 2016, “Flow and Heat Transfer in Micro Pin Fin Heat Sinks with Nano-Encapsulated Phase Change Materials,” J. Heat Transfer, 138(6), p. 062401 (PDF) [Google Scholar].
  34. Ji, P., and Zhang, Y., 2016, “Continuum-Atomistic Simulation of Picosecond Laser Heating of Copper with Electron Heat Capacity from ab initio Calculation,” Chem. Phys. Lett., 648, pp. 109-113 (PDF) [Google Scholar].
  35. Li, Z., Yang, M., and Zhang, Y., 2016, “Double MRT Thermal Lattice Boltzmann Method for Simulating Natural Convection of Low Prandtl Number Fluids,” Int. J. Numer. Methods Heat Fluid Flow, 26(6), pp. 1809-1909 (PDF) [Google Scholar].
  36. Pouryoussefi, S.M., and Zhang, Y., 2016, “Numerical Investigation of Chaotic Flow in a 2D Closed-Loop Pulsating Heat Pipe,” Appl. Therm. Eng., 98, pp. 617-627 (PDF) [Google Scholar].
  37. Fu, T., Mao, Y., Tang, Y., and Zhang, Y., Yuan, W., 2016, “Effect of Nanostructure on Rapid Boiling of Water on a Hot Copper Plate: a Molecular Dynamics Study,” Heat and Mass Transfer, 52(8), pp. 1469-1478 (PDF) [Google Scholar].
  38. Taybe, R., Dou, X., Mao, Y., and Zhang, Y., 2016, “Analysis of Cohesive Micro-Sized Particle Packing Structure Using History-Dependent Contact Models,” J. Manuf. Sci. Eng., 138(4), p. 041005 (PDF) [Google Scholar].
  39. Wang, K., He, Y.L., Qiu, Y., Zhang, Y.,2016, “A Novel Integrated Simulation Approach Couples MCRT and Gebhart Methods to Simulate Solar Radiation Transfer in a Solar Power Tower System with a Cavity Receiver,” Renewable Energy, 89, pp. 93-107 (PDF) [Google Scholar].
  40. Zhao, M., Zhu, T., Wang, C., Chen, H., and Zhang, Y., 2016, “Numerical Simulation on the Thermal Performance of Hydraulic Floor Heating System with Phase Change Materials,” Appl. Therm. Eng., 93, pp. 900-907 (PDF) [Google Scholar].
  41. Li, Z., Yang, M., and Zhang, Y., 2016, “Lattice Boltzmann Method Simulation of 3-D Natural Convection with Double MRT Model,” Int. J. Heat Mass Transfer, 94, pp. 222-238 (PDF) [Google Scholar].
  42. Karimi, F., Xu, H.T., Wang, Z., Yang, M., and Zhang, Y., 2016, “Numerical Simulation of Steady Mixed Convection around Two Heated Circular Cylinders in a Square Enclosure,” Heat Transfer Eng., 37(1), pp. 64-75 (PDF) [Google Scholar].

    2015 (23 Papers)

  43. Li, Z., Yang, M., Zhang, Y., and Montgomery-Smith, S., 2015, “Investigation on Oscillatory Flow in an Oscillating Heat Pipe with Random Initial Conditions,” J. Enhanced Heat Transfer, 22(6), pp. 485-502 (PDF).
  44. Kim, Y., Choi, J., Kim, S., and Zhang, Y., 2015, “Effects of Mass Transfer Time Relaxation Parameters on Condensation in a Thermosyphon,” J. Mech. Sci. Technol., 29(12), pp. 5497-5505 (PDF) [Google Scholar].
  45. Mohammadian, S.K., Rassoulinejad-Mousavi, S.M., and Zhang, Y., 2015, “Thermal Management Improvement of an Air-Cooled High-Power Lithium-ion Battery by Embedding Metal Foam,” J. Power Sources, 296, pp. 305-313 (PDF) [Google Scholar].
  46. Hanafizadeh, P., Pouryoussefi, S.M., Fathpour, M., and Zhang, Y., 2015, “Identification of Two-Phase Water-Air Flow Patterns in a Vertical Pipe Using Fuzzy Logic and Genetic Algorithm,” Appl. Therm. Eng., 85, pp. 195-206 (PDF) [Google Scholar].
  47. Li, Z., Yang, M., and Zhang, Y., 2015, “Numerical Simulation of Melting Problems Using Lattice Boltzmann Method with Interfacial Tracking Method,” Numer. Heat Transfer, Part A, 68(11), pp. 1175-1197 (PDF) [Google Scholar].
  48. Shi, H., Fan, S., Zhang, Y., and Sun, J., 2015, “Nonlinear Dynamics Study Based on Uncertainty Analysis in Electro-Thermal Excited Mems Resonant Sensor,” Sensor Actuat. A-Phys., 232, pp. 103-114 (PDF) [Google Scholar]
  49. Li, Z., Yang, M., and Zhang, Y., 2015, “A Hybrid Lattice Boltzmann and Monte Carlo Method for Natural Convection Simulation,” Int. J. Multiscale Comput. Eng., 13(4), pp. 297-309 (PDF) [Google Scholar].
  50. Pouryoussefi, S.M., and Zhang, Y., 2015, “Experimental Study of Air-Cooled Parallel Plate Fin Heat Sinks with and without Circular Pin Fins between the Plate Fins,” J. Applied Fluid Mechanics, 8(3), pp. 515-520 (PDF) [Google Scholar].
  51. Mohammadian, S.K., He, Y.L., and Zhang, Y., 2015, “Internal Cooling of a Lithium-Ion Battery using Electrolyte as Coolant through Microchannels Embedded inside the Electrodes,” J. Power Sources, 293, pp. 458-466 (PDF) [Google Scholar].
  52. Wang, J., Yang, M., and Zhang, Y., 2015, “Coupling-Diffusive Effects on Thermosolutal Buoyancy Convection in a Horizontal Cavity,” Numer. Heat Transfer, Part A, 68(6), pp. 583-597 (PDF) [Google Scholar].
  53. Mao, Y., Zhang, Y., and Chen, C.L., 2015, “Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates,” J. Heat Transfer, 137(9), p. 091011 (PDF) [Google Scholar].
  54. Li, L., Du, X., Zhang, Y., Yang, L., and Yang, Y., 2015, “Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger with Longitudinal Vortex Generators,” Int. J. Therm. Sci., 92, pp. 85-96 (PDF) [Google Scholar].
  55. Fu, T., Mao, Y., Tang, Y., and Zhang, Y., Yuan, W., 2015, “Molecular Dynamics Simulation on Rapid Boiling of Thin Water Films on Cone-Shaped Nanostructure Surfaces,” Nanoscale Microscale Thermophys. Eng., 19(1), pp. 17-30 (PDF) [Google Scholar].
  56. Deng, X., Fu, J., and Zhang, Y., 2015, “A Predictive Model for Temperature Rise of Spindle-Bearing Integrated System,” J. Manuf. Sci. Eng., 137(2), p. 021014 (PDF) [Google Scholar].
  57. Li, L., Zhou, L., Shan, Y., Zhang, Y., 2015, “Investigation on Heat Transfer Mechanism of Ultrashort Laser Interaction with Metals,” Int. J. Thermophys., 36(1), pp. 183-203 (PDF) [Google Scholar].
  58. Yue, Y., Mohammadian, S.K., Zhang, Y., 2015, “Analysis of Performances of a Manifold Microchannel Heat Sink with Nanofluids,” Int. J. Therm. Sci., 89, pp. 305-313 (PDF) [Google Scholar].
  59. Rajabi Far, B., Mohammadian, S.K., Khanna, S.K., Zhang, Y., 2015, “Effects of Tip-Clearance on the Performance of an Enhanced Microchannel Heat Sink with Oblique Fins and Phase Change Material Slurry,” Int. J. Heat Mass Transfer, 83, pp. 136-145 (PDF) [Google Scholar].
  60. Mohammadian, S.K., and Zhang, Y., 2015, “Thermal Management Optimization of an Air-Cooled Li-ion Battery Module Using Pin-Fin Heat Sinks for Hybrid Electric Vehicles,” J. Power Sources, 273, pp. 431-439 (PDF) [Google Scholar].
  61. Shi, H., Fan, S., Zhang, Y., and Sun, J., 2015, “Design and Optimization Based on Uncertainty Analysis in Electro-Thermal Excited MEMS Resonant Sensor,” Microsyst. Technol., 21(4), pp. 757-771 (PDF) [Google Scholar].
  62. Wei, B., Yang, M., Wang, Z., Xu, H., and Zhang, Y., 2015, “Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling,” J. Nanosci. Nanotechno., 15(4), pp. 3061-3066 (PDF) [Google Scholar].
  63. Lu, H., Seyf, H.R., Zhang, Y., and Ma, H.B., 2015, “Heat Transfer Enhancement of Backward-Facing Step Flow by Using Nano-Encapsulated Phase Change Material Slurry,” Numer. Heat Transfer, Part A, 67(4), pp. 381-400 (PDF) [Google Scholar].
  64. Wang, J., Yang, M., and Zhang, Y., 2015, “A Nonequilibrium Thermal Model for Direct Metal Laser Sintering,” Numer. Heat Transfer, Part A, 67(3), pp. 249-267 (PDF) [Google Scholar].
  65. Wang, J., Yang, M., and Zhang, Y., 2015, “A Multiscale Nonequilibrium Model for Melting of Metal Powder Bed Subjected to Constant Heat Flux,” Int. J. Heat Mass Transfer, 80, pp. 309-318 (PDF) [Google Scholar].

    2014 (28 papers)

  66. Zhang, K., Yang, M., and Zhang, Y., 2014, “Two- and Three-Dimensional Numerical Simulations of Natural Convection in a Cylindrical Envelope with an Internal Concentric Cylinder with Slots,” Int. J. Heat Mass Transfer, 70, pp. 434-438 (PDF) [Google Scholar].
  67. Tang, Y., Fu, T., Mao, Y., Zhang, Y., Yuan, W., 2014, Molecule Dynamics Simulation of Heat Transfer between Argon Flow and Parallel Copper Plates,” J. Nanotechnol. Eng. Med., 5(3), p. 034501 (PDF) [Google Scholar].
  68. Li, Z., Yang, M., and Zhang, Y., 2014, “A Hybrid Lattice Boltzmann and Finite Volume Method for Melting with Natural Convection,” Numer. Heat Transfer, Part B, 66(4), pp. 307-325 (PDF) [Google Scholar].
  69. Wang, J., Yang, M., and Zhang, Y., 2014, “Onset of Double-Diffusive Convection in Horizontal Cavity with Soret and Dufour Effects,” Int. J. Heat Mass Transfer, 78, pp. 1023-1031 (PDF) [Google Scholar].
  70. Wang, P., Yang, M., Wang, Z., and Zhang, Y., 2014, “A New Heat Transfer Correlation for Turbulent Flow of Air with Variable Properties in Noncircular Ducts,” J. Heat Transfer, 136(10), p. 101701 (PDF) [Google Scholar].
  71. Zhou, L., Li, L., Zhang, Y., Shan, Y.G., 2014, “Source Distribution Based on Mie’s Scattering Theory for Heat Conduction in Nanoparticle Subject to Ultrashort Laser Irradiation,” Numer. Heat Transfer, Part A, 66(6), pp. 605-621 (PDF) [Google Scholar].
  72. Liu, W., Liu, L., Huang, J., Zhang, Y., Xu, G. and Yang, Y., 2014, “Analysis and Optimization of a Compressed Air Energy Storage – Combined Cycle System,” Entropy, 16, pp. 3103-3120 (PDF) [Google Scholar].
  73. Mohammadian, S.K., and Zhang, Y., 2014, “Analysis of Nanofluid Effects on Thermoelectric Cooling by Micro-Pin-Fin Heat Exchangers,” Appl. Therm. Eng., 70(1), pp. 282-290 (PDF) [Google Scholar].
  74. Feng, Z.C., and Zhang, Y., 2014, “Safety Monitoring of Exothermic Reactions Using Time Derivatives of Temperature Sensors,” Appl. Therm. Eng., 66(1-2), pp. 346-354 (PDF) [Google Scholar].
  75. Zhu, G., and Zhang, Y., 2014, “Analysis of Casting Roll Temperature Distribution and Thermal Deformation in Twin-Roll Continuous Strip Casting,” J. Manuf. Sci. Eng., 136(3), p. 034501 (PDF) [Google Scholar].
  76. Yang, M., Zhou, Y., Zhang, Y., Li, Z., 2014, “Lattice Boltzmann Method Simulation of Flows in Cylinder with Internal Slotted Hollow,” J. Thermophys. Heat Transfer, 28(2), pp. 279-286 (PDF) [Google Scholar].
  77. Huang, J., Gruzdev, V.E., Zhang, Y., and Chen, J.K., 2014, “Sintering of Titanium and Nickel Nanopowders with a Nd:YAG Nanosecond Laser,” Frontiers in Heat and Mass Transfer, 5, p. 1 (PDF) [Google Scholar].
  78. Xu, H.T., Xiao, R., Karimi, F., Yang, M., and Zhang, Y., 2014, “Numerical Study of Double Diffusive Mixed Convection around a Heated Cylinder in an Enclosure,” Int. J. Therm. Sci., 78, pp. 169-181 (PDF) [Google Scholar].
  79. Xu, H.T., Wang, Z.Y., Karimi, F., Yang, M., and Zhang, Y., 2014, “Numerical Simulation of Double Diffusive Mixed Convection in an Open Enclosure with Different Cylinder Locations,” Int. Commun. Heat Mass Transfer, 52, pp. 33-45 (PDF) [Google Scholar].
  80. Dou, X., Mao, Y., and Zhang, Y., 2014, “Effects of Contact Force Model and Size Distribution on Micro-sized Granular Packing,” J. Manuf. Sci. Eng., 136(2), p. 021003 (PDF) [Google Scholar].
  81. Li, L., Zhou, L., and Zhang, Y., 2014, “Thermal Wave Superposition and Reflection Phenomena during Femtosecond Laser Interaction with Thin Gold Film,” Numer. Heat Transfer, Part A, 65(12), pp. 1139-1153 (PDF) [Google Scholar].
  82. Li, Z., Yang, M., and Zhang, Y., 2014, “Hybrid Lattice Boltzmann and Finite Volume Methods for Fluid Flow Problems,” Int. J. Multiscale Comput. Eng., 12(3), pp. 177-192 (PDF) [Google Scholar].
  83. Seyf, H.R., Wilson, M., Zhang, Y., and Ma, H.B., 2014, “Flow and Heat Transfer of Nanoencapsulated Phase Change Material Slurry Past a Unconfined Square Cylinder,” J. Heat Transfer, 136(5), p. 051902 (PDF) [Google Scholar].
  84. Li, Z., Yang, M., and Zhang, Y., 2014, “Hybrid Lattice Boltzmann and Finite Volume Method for Simulation of Natural Convection,” J. Thermophys. Heat Transfer, 28(1), pp. 68-77 (PDF) [Google Scholar].
  85. Karimi, F., Xu, H.T., Yang, M., and Zhang, Y., 2014, “ Numerical Simulation of Unsteady Natural Convection from Heated Horizontal Circular Cylinders in a Square Enclosure,” Numer. Heat Transfer, Part A, 65(8), pp. 715-731 (PDF) [Google Scholar].
  86. Peng, Q., He, Y.L., and Zhang, Y., 2014, “Numerical Simulation of Heat and Mass Transfer during Nanosecond Laser Chemical Vapor Deposition on a Particle Surface,” Numer. Heat Transfer, Part A, 65(7), pp. 662-678 (PDF) [Google Scholar].
  87. Feng, Z.C., and Zhang, Y., 2014, “Thermal Runaway due to Symmetry Breaking in Parallel-Connected Battery Cells,” Int. J. Energy Research, 38(6), pp. 813-821 (PDF) [Google Scholar].
  88. Li, Z., Yang, M., and Zhang, Y., 2014, “A Coupled Lattice Boltzmann and Finite Volume Method for Natural Convection Simulation,” Int. J. Heat Mass Transfer, 70, pp. 864–874 (PDF) [Google Scholar].
  89. Zhang, K., Yang, M., Wang, J., and Zhang, Y., 2014, “Three-Dimensional Numerical Simulations of Natural Convection in a Cylindrical Envelope with an Internal Concentric Cylinder with Slots,” J. Engineering Thermophys., 35(1), pp. 128-131 (PDF)
    (in Chinese: 张昆,杨茉,王津,张玉文, 圆筒内开缝圆筒自然对流的数值模拟,工程热物理学报, 第35卷, 第1期, 第128-131页, 2014年1月) [Google Scholar].
  90. Mao, Y., and Zhang, Y., 2014, “Molecular Dynamics Simulation on Rapid Boiling of Water on a Hot Copper Plate,” Appl. Therm. Eng., 62(2), pp. 607-612 (PDF) [Google Scholar].
  91. Zhang, K., Yang, M., Wang, J., and Zhang, Y., 2014, “Experimental Study on Natural Convection in a Cylindrical Envelope with an Internal Concentric Cylinder with Slots,” Int. J. Therm. Sci., 76, pp. 190-199 (PDF) [Google Scholar].
  92. Mohammadian, S.K., Seyf, H.R., and Zhang, Y., 2014, “Performance Augmentation and Optimization of Aluminum Oxide-Water Nanofluid Flow in a Two-Fluid Microchannel Heat Exchanger,” J. Heat Transfer, 136(2), p. 021701 (PDF) [Google Scholar].
  93. Afrin, N., Zhang, Y., and Chen, J.K., 2014, “Dual-Phase Lag Behavior of a Gas-Saturated Porous-Medium Heated by a Short-Pulsed Laser,” Int. J. Therm. Sci., 75, pp. 21-27 (PDF) [Google Scholar].

    2013 (23 papers)

  94. Li, L., Du, X., Zhang, Y., Xu, C., Yang, L., and Yang, Y., 2013, “Experimental and Numerical Study of Heat Transfer over a Finned Elliptical Flat Tube Fitted with Longitudinal Vortex Generators on the Rectangular Fin Surface,” J. Enhanced Heat Transfer, 20(5), pp. 427-441 (PDF) [Google Scholar].
  95. Ji, P., Zhang, Y., and Yang, M., 2013, “Structural, Dynamic, and Vibrational Properties during Heat Transfer in Si/Ge Superlattices: A Car-Parrinello Molecular Dynamics Study,” J. Appl. Phys., 114, p. 234905 (PDF) [Google Scholar].
  96. Ji, P., and Zhang, Y., 2013, “Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study,” J. Phys. D: Appl. Phys., 46(49), p. 495108 (PDF) [Google Scholar].
  97. Seyf, H.R., and Zhang, Y., 2013, “Molecular Dynamics Simulation of Evaporation and Boiling on Nanostructured Copper Surface,” J. Heat Transfer, 135(12), p. 121503 (PDF) [Google Scholar].
  98. He, Y.L., Chu, P., Tao, W.Q., Zhang, Y., Xie, T., 2013, “Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers with Rectangular Winglet-Type Vortex Generators,” Appl. Therm. Eng., 61(2), pp. 770-783 (PDF) [Google Scholar].
  99. Shen, C.Y., Yang, M., Wang, J., Zhang, K., Zhang, Y., 2013, “Natural Convection Heat Transfer Characteristics of a Circle with an Internal Concentric Round Slotted in Different Direction,” J. University of Shanghai for Science and Technology, 35(5), pp. 425-429 (PDF)
    (in Chinese: 申春赟 杨茉 王津 张昆 张玉文, 圆内开缝圆不同开缝方向自然对流换热,上海理工大学学报,第35卷,第5期,第425-429) [Google Scholar].
  100. Mao, Y., and Zhang, Y., 2013, “Evaluation of Turbulent Models for Natural Convection of Compressible Air in a Tall Cavity,” Numer. Heat Transfer, Part B, 64(5), pp. 351-364 (PDF) [Google Scholar].
  101. Li, Z., Yang, M., Chen, Q., and Zhang, Y., 2013 “Numerical Solution of Melting in a Discretely Heated Enclosure using an Interfacial Tracking Method,” Numer. Heat Transfer, Part A, 64(11), pp. 841-857 (PDF) [Google Scholar].
  102. Seyf, H.R., and Zhang, Y., 2013, “Effect of Nanotextured Array of Conical Features on Explosive Boiling over a Flat Substrate: A Nonequilibrium Molecular Dynamics Study,” Int. J. Heat Mass Transfer, 66, pp. 613-624 (PDF) [Google Scholar].
  103. Jiang, S., Zhang, Y., Gan, Y., Chen, Z., and Peng, H., 2013, “Molecular Dynamics Study of Neck Growth in Laser Sintering of Hollow Silver Nanoparticles with Different Heating Rates,” J. Phys. D: Appl. Phys., 46(33), p. 335302 (PDF) [Google Scholar].
  104. Seyf, H.R., Kim, S., and Zhang, Y., 2013, “Thermal Performance of an Al2O3-Water Nanofluid Pulsating Heat Pipe,” J. Electron. Packaging, 135(3), p. 031005 (PDF) [Google Scholar].
  105. Mao, Y., Chen, C.L., and Zhang, Y., 2013, “Molecular Dynamic Study on Contact Angle of Water Droplet on a Single-Wall Carbon Nanotube (SWCNT) Plate,” Appl. Phys. A-Mater., 111(3), pp. 747-754 (PDF) [Google Scholar].
  106. Kim, S., Zhang, Y., and Choi, J., 2013, “Effects of Fluctuations of Heating and Cooling Section Temperatures on Performance of a Pulsating Heat Pipe,” Appl. Therm. Eng., 58(1-2), pp. 42-51 (PDF) [Google Scholar].
  107. Ren, Y., Cheng, C.W., Chen, J.K., Zhang, Y., Tzou, D.Y., 2013, “Thermal Ablation of Metal Films by Femtosecond Laser Bursts,” Int. J. Therm. Sci., 70, pp. 32-40 (PDF) [Google Scholar].
  108. Peng, Q., Zhang, Y., He, Y.L., Mao, Y., 2013, “Thermal Modeling of Chemical Vapor Deposition on the Particle Surface Subjected to Nanosecond Laser Heating,” Int. J. Heat Mass Transfer, 61, pp. 675-683 (PDF) [Google Scholar].
  109. Afrin, N., Feng, Z.C., Zhang, Y., and Chen, J.K., 2013, “Inverse Estimation of Front Surface Temperature of a Locally Heated Plate with Temperature-Dependent Conductivity via Kirchhoff Transformation,” Int. J. Therm. Sci., 69, pp. 53-60 (PDF) [Google Scholar].
  110. Peng, H., Zhang, Y., Pai, P.F., 2013, “Uncertainty Analysis of Solid-Liquid-Vapor Phase Change of a Metal Particle Subject to Nanosecond Laser Heating,” J. Manuf. Sci. Eng., 135(2), p. 021009 (PDF) [Google Scholar].
  111. Mao, Y., and Zhang, Y., 2013, “Nonequilibrium Molecular Dynamics Simulation of Nanobubble Growth and Annihilation in Liquid Water,” Nanoscale Microscale Thermophys. Eng., 17(2), pp. 79-91 (PDF) [Google Scholar].
  112. Ji, P., and Zhang, Y., 2013, “First-Principles Molecular Dynamics Investigation of the Atomic-Scale Energy Transport: From Heat Conduction to Thermal Radiation” Int. J. Heat Mass Transfer, 60, pp. 69-80 (PDF) [Google Scholar].
  113. Mao, Y., Zhang, Y., and Chen, J.K., 2013, “Melting, Vaporization and Resolidification in a Thin Gold Film Subject to Multiple Femtosecond Laser Pulses,” J. Manuf. Sci. Eng., 135(2), p. 021007 (PDF) [Google Scholar].
  114. Seyf, H.R., Zhou, Z., Ma, H.B., and Zhang, Y., 2013, “Three Dimensional Numerical Study of Heat-Transfer Enhancement by Nano-Encapsulated Phase Change Material Slurry in Microtube Heat Sinks with Tangential Impingement,” Int. J. Heat Mass Transfer, 56(1-2), pp. 561-573 (PDF) [Google Scholar].
  115. Ren, Y., Zhang, Y., Chen, J.K., and Feng, Z.C., 2013, “Inverse Estimation of the Front Surface Temperature of a 3-D Finite Slab Based on the Back Surface Temperature Measured at Coarse Grids,” Numer. Heat Transfer, Part B, 63(1), pp. 1-17 (PDF) [Google Scholar].
  116. Kim, S., Zhang, Y., and Choi, J., 2013, “Entropy Generation Analysis for a Pulsating Heat Pipe,” Heat Transfer Research, 44(1), pp.1-30 (PDF) [Google Scholar].

    2012 (24 papers)

  117. Mao, Y., and Zhang, Y., 2012, “Prediction of the Temperature-Dependent Thermal Conductivity and Shear Viscosity for Rigid Water Models,” J. Nanotechnol. Eng. Med., 3(3), p. 031009 (PDF) [Google Scholar].
  118. Li, Z., Yang, M., Wang, Z., Zhang, Y., 2012, “A Corrected Method to Solve the Convective-Diffusion Equation Based on SIMPLE,” J. Engineering Thermophys., 33(9), pp. 1563-1566 (PDF)
    (in Chinese: 李峥,杨茉,王治云,张玉文, 基于SIMPLE求解对流-扩散方程的一种新方法, 工程热物理学报, 33, 9, 1563-1566, 20129) [Google Scholar].
  119. Mao, Y., and Zhang, Y., 2012, “Thermal Conductivity, Shear Viscosity and Specific Heat of Rigid Water Models,” Chem. Phys. Lett., 542, pp. 37-41 (PDF) [Google Scholar].
  120. Jia, T., Zhang, Y., Ma, H.B., and Chen, J.K., 2012, “Investigation of the Characteristics of Heat Current in a Nanofluid Based on Molecular Dynamics Simulation,” Appl. Phys. A-Mater., 108(3), pp. 537-544 (PDF) [Google Scholar].
  121. Kang, H., Zhang, Y., Yang, M., and Li, L., 2012, “Molecular Dynamics Simulation on Effect of Nanoparticle Aggregation on Transport Properties of a Nanofluid,” J. Nanotechnol. Eng. Med., 3(2), p. 021001 (PDF) [Google Scholar].
  122. He, Y. L., Han, H., Tao, W.Q., and Zhang, Y.W., 2012, “Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers,” Int. J. Heat Mass Transfer, 55(21-22), pp. 5449-5458 (PDF) [Google Scholar].
  123. Bian, E.-J., Yang, M., Li, L., Zhang,Y.W., 2012, “Simulation and Nonlinear Analysis for the Rayleigh-Benard Convection with the Lattice-Boltzmann Method,” J. Engineering Thermophys., 33(4), pp. 685-688 (PDF)
    (in Chinese: 卞恩杰,杨茉,李凌,张玉文, 格子Boltzmann方法对Rayleigh-Benard流的模拟与非线性分析, 工程热物理学报, 33,4, 685-688, 20124) [Google Scholar].
  124. Afrin, N., Zhou, J., Zhang, Y., Tzou, D.Y., and J., Chen, J.K., 2012, “Numerical Simulation of Thermal Damage to Living Biological Tissues Induced by Laser Irradiation based on a Generalized Dual Phase Lag Model,” Numer. Heat Transfer, Part A, 61(7), pp. 483-501 (PDF) [Google Scholar].
  125. Ren, Y., Chen, J.K., and Zhang, Y., 2012, “Heat Transfer in Metal Films Irradiated by Combined Nanosecond Laser Pulse and Femtosecond Pulse Train,” Frontiers in Heat and Mass Transfer, 3(2), p. 023001 (PDF) [Google Scholar].
  126. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2012, “Three-Dimensional Inverse Heat Transfer in a Composite Target Subject to High-Energy Laser Irradiation,” J. Heat Transfer, 134(11), p. 111201 (PDF) [Google Scholar].
  127. Wang, Z., Yang, M., Li, L., and Zhang, Y., 2012, “Oscillation and Chaos in Combined Heat Transfer by Natural Convection, Conduction, and Surface Radiation in an Open Cavity,” J. Heat Transfer, 134(9), p. 094501 (PDF) [Google Scholar].
  128. Zhang, K. Yang, M., and Zhang, Y., 2012, “A Compact Finite-Difference Scheme Based on the Projection Method for Natural-Convection Heat Transfer,” Numer. Heat Transfer, Part B, 61(4), pp. 259 – 278 (PDF) [Google Scholar].
  129. Huang, J., Zhang, Y., Chen, J.K., and Yang, M., 2012, “Ultrafast Solid-Liquid-Vapor Phase Change of a Thin Gold Film Irradiated by Femtosecond Laser Pulses and Pulse Trains,” Frontiers in Energy,6(1), pp. 1–11 (PDF) [Google Scholar].
  130. Choi, J. and Zhang, Y., 2012, “Numerical Simulation of Laminar Forced Convection Heat Transfer of Al2O3-Water Nanofluid in a Pipe with Return Bend,” Int. J. Therm. Sci., 55, 90-102 (PDF) [Google Scholar].
  131. Jia, T., Zhang, Y., Chen, J.K., He, Y.L., 2012, “Dynamic Simulation of Granular Packing of Fine Cohesive Particles with Different Size Distributions,” Powder Technol., 218, pp. 76-85 (PDF) [Google Scholar].
  132. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2012, “Inverse Estimation of Surface Temperature Induced by a Moving Heat Source in a 3-D Object Based on Back Surface Temperature with Random Measurement Errors,” Numer. Heat Transfer, Part A, 61(2), pp. 85-100 (PDF) [Google Scholar].
  133. Jung, S., Seo, D., Lombardo, S.L.,Feng, Z.C., Chen, J.K., and Zhang, Y., 2012, “Fabrication Using Filler Controlled Pyrolysis and Characterization of Polysilazane PDC RTD Arrays on Quartz Wafers,” Sensor Actuat. A-Phys., 175, pp. 53-59 (PDF) [Google Scholar].
  134. Ren, Y., Chen, J.K., and Zhang, Y., 2012, “Modeling of Ultrafast Phase Changes in Metal Films Induced by an Ultrashort Laser Pulse Using a Semi-Classical Two-Temperature Model,” Int. J. Heat Mass Transfer, 55(5-6), pp. 1620-1627 (PDF) [Google Scholar]
  135. Yang, L., Gan, Y., Zhang, Y., and Chen, J.K., 2012, “Molecular Dynamics Simulation of Neck Growth in Laser Sintering of Different-Sized Gold Nanoparticles under Different Heating Rates,” Appl. Phys. A-Mater., 106(3), pp. 725-735 (PDF) [Google Scholar].
  136. Damronglerd, P., and Zhang, Y., Yang, M., 2012, “Numerical Simulation of Solidification of Liquid Copper Saturated in Porous Structures Fabricated by Sintered Steel Particles,” Int. J. Numer. Methods Heat Fluid Flow, 22(1), pp. 94-111 (PDF) [Google Scholar].
  137. Kang, H., Zhang, Y., Yang, M., and Li, L., 2012, “Nonequilibrium Molecular Dynamics Simulation of Coupling between Nanoparticles and Base-Fluid in a Nanofluid,” Phys. Lett. A, 376(4), pp. 521-524 (PDF) [Google Scholar].
  138. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2012, “Inverse Estimation of Front Surface Temperature of a Plate with Laser Heating and Convection-Radiation Cooling,” Int. J. Therm. Sci., 52(1), pp. 22-30 (PDF) [Google Scholar].
  139. Jia, T., Zhang, Y., and Chen, J.K., 2012, “Simulation of Granular Packing of Particles with Different Size Distributions,” Comput. Mater. Sci., 51(1), pp. 172-180 (PDF) [Google Scholar].
  140. Huang, J., Zhang, Y., and Chen, J.K., 2012, “Size Effects during Femtosecond Laser Interaction with Nanosized Metal Particles,” J. Heat Transfer, 134(1), p. 012401 (PDF) [Google Scholar].

    2011 (25 papers)

  141. Ren, Y., Chen, J.K., and Zhang, Y., 2011, “Optical Properties and Thermal Response of Copper Films Induced by Ultrashort-Pulsed Lasers,” J. Appl. Phys., 110(11), p. 113102 (PDF) [Google Scholar].
  142. Zhao, M., Yang, M., Lu, M., and Zhang, Y., 2011, “Evolution to Chaotic Mixed Convection in a Multiple Ventilated Cavity,” Int. J. Therm. Sci., 50(12), pp. 2464-2472 (PDF) [Google Scholar].
  143. Wang, Z., Yang, M., Li, L., and Zhang, Y., 2011, “Combined Heat Transfer by Natural Convection-Conduction and Surface Radiation in an Open Cavity under Constant Heat Flux Heating,” Numer. Heat Transfer, Part A, 60(4), pp. 289-304 (PDF) [Google Scholar].
  144. Chen, Q., Yang, M., Zhang, Y., and, He, Y.L., 2011, “Numerical Simulation of Melting in Porous Media via an Interfacial Tracking Model,” J. Thermophys. Heat Transfer, 25(3), pp. 401-407 (PDF) [Google Scholar].
  145. Shao, W., and Zhang, Y., 2011, “Effects of Capillary and Gravitational Forces on Performance of an Oscillating Heat Pipe,” Frontiers in Heat Pipes, 2(2), p. 023003 (PDF) [Google Scholar].
  146. Yang, L., Zhang, Y., and Chen, J.K., 2011, “Molecular Dynamics Simulation of Deposition of Nickel Nanocluster on Copper Surface,” J. Nanopart. Res., 13(10), pp. 4479-4489 (PDF) [Google Scholar].
  147. Avedisian, C.T., Bejan, A., Cao, Y., Dhir, V., Howell, J.R., Incropera, F.P., Minkowycz, W. J., Peterson, G.P., Viskanta, R., and Zhang, Y., 2011, “In Celebration: Professor Amir Faghri on his 60th Birthday,” Int. J. Heat Mass Transfer, 54(21-22), pp. 4459-4461 [Google Scholar].
  148. Kang, H., Zhang, Y., and Yang, M., 2011, “Molecular Dynamics Simulation of Thermal Conductivity of Cu-Ar Nanofluid Using EAM potential for Cu-Cu Interactions,” Appl. Phys. A-Mater., 103(4), pp. 1001-1008 (PDF) [Google Scholar].
  149. Feng, Z.C., Chen, J.K., Zhang, Y., and Griggs, J.L., 2011, “Estimation of Front Surface Temperature and Heat Flux of a Locally Heated Plate from Distributed Sensor Data on the Back Surface,” Int. J. Heat Mass Transfer, 54(15-16), pp. 3431-3439 (PDF) [Google Scholar].
  150. Zhang, K., Yang, M., and Zhang, Y., 2011, “Numerical Analysis of Natural Convection in a Cylindrical Envelope with an Internal Concentric Cylinder with Slots,” Numer. Heat Transfer, Part A, 59(10), pp. 739-754 (PDF) [Google Scholar].
  151. Faghri, A., and Zhang, Y., 2011, “A Tribute in Memory of Professor Ralph L. Webb (1934–2011),” Frontiers in Heat and Mass Transfer, 2(2), p. 021001 [Google Scholar].
  152. Ren, Y., Chen, J.K., Zhang, Y., and Huang, J., 2011, “Ultrashort Laser Pulse Energy Deposition in Metal Films with Phase Changes,” Appl. Phys. Lett., 98(19), p. 191105 (PDF) [Google Scholar].
  153. Jia, T., Zhang, Y., and Chen, J.K., 2011, “Dynamic Simulation of Particle Packing with Different Size Distributions,” J. Manuf. Sci. Eng., 133(2), p. 021011 (PDF) [Google Scholar].
  154. Afrin, N., Zhang, Y., and J., Chen, J.K., 2011, “Thermal Lagging in Living Biological Tissue Based on Nonequilibrium Heat Transfer between Tissue, Arterial and Venous Bloods,” Int. J. Heat Mass Transfer, 54(11-12), pp. 2419-2426 (PDF) [Google Scholar].
  155. Huang, J, Zhang, Y., and Chen, J.K., 2011, “Superheating in Liquid and Solid Phases during Femtosecond-Laser Pulse Interaction with Thin Metal Film,” Appl. Phys. A-Mater., 103(1), pp. 113-121 (PDF) [Google Scholar].
  156. Chen, Q., Zhang, Y., and Yang, M., 2011, “An Interfacial Tracking Model for Convection-Controlled Melting Problems,” Numer. Heat Transfer, Part B, 59(3), pp. 209-225 (PDF) [Google Scholar].
  157. Seo, D., Jung, S., Lombardo, S.L., Feng, Z.C., Chen, J.K., and Zhang, Y., 2011, “Fabrication and Electrical Properties of Polymer-Derived Ceramic (PDC) Thin Films for High-Temperature Heat Flux Sensors,” Sensor Actuat. A-Phys., 165(2), pp. 250-255 (PDF) [Google Scholar].
  158. Huang, J., Baheti, K., Chen, J.K., and Zhang, Y., 2011, “An Axisymmetric Model for Solid-Liquid-Vapor Phase Change in Thin Metal Films Induced by an Ultrashort Laser Pulse,” Frontiers in Heat and Mass Transfer, 2(1), p. 013005 (PDF) [Google Scholar].
  159. Zhao, M., Yang, M., Lu, M., and Zhang, Y., 2011, “Self-Sustained Oscillations and Bifurcations of Mixed Convection in a Multiple Ventilated Enclosure,” Computational Thermal Sciences, 3(1), pp. 63-72 (PDF) [Google Scholar].
  160. Shao, W., and Zhang, Y., 2011, “Effects of Film Evaporation and Condensation on Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe,” J. Heat Transfer, 133(4), p. 042901 (PDF) [Google Scholar].
  161. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2011, “Inverse Estimation of Surface Heating Condition in a Finite Slab with Temperature-Dependent Thermophysical Properties,” Heat Transfer Eng., 32(10), pp. 861-875 (PDF) [Google Scholar].
  162. Baheti, K., Huang, J., Chen, J.K., and Zhang, Y., 2011, “An Axisymmetric Interfacial Tracking Model for Melting and Resolidification in a Thin Metal Film Irradiated by Ultrashort Pulse Lasers,” Int. J. Therm. Sci., 50(1), pp. 25-35 (PDF) [Google Scholar].
  163. Yang, L., Zhang, Y., and Chen, J.K., 2011, “An Integral Approximate Solution to Ablation of a Two-Layer Composite with a Temporal Gaussian Heat Flux,” Heat Transfer Eng., 32(5), pp. 418-428 (PDF) [Google Scholar].
  164. Huang, J, Zhang, Y., Chen, J.K., and Yang, M., 2011, “Modeling of Ultrafast Phase Change Processes in a Thin Metal Film Irradiated by Femtosecond Laser Pulse Trains,” J. Heat Transfer, 133(3), p. 031003 (PDF) [Google Scholar].
  165. Shao, W., and Zhang, Y., 2011, “Thermally-Induced Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe,” J. Enhanced Heat Transfer, 18(3), pp. 177-190 (PDF) [Google Scholar].

    2010 (13 Papers)

  166. Feng, Z.C., Chen, J.K., Zhang, Y., and Montgomery-Smith, S., 2010, “Temperature and Heat Flux Estimation from Sampled Transient Sensor Measurements,” Int. J. Therm. Sci., 49(12), pp. 2385-2390 (PDF) [Google Scholar].
  167. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2010, “Inverse Estimation of Spatially and Temporally Varying Heating Boundary Conditions of a Two-Dimensional Object,” Int. J. Therm. Sci., 49(9), pp. 1669-1679 (PDF) [Google Scholar].
  168. Huang, J, Zhang, Y., and Chen, J.K., 2010, “Ultrafast Phase Change during Femtosecond Laser Interaction with Gold Films: Effect of Film Thickness,” Numer. Heat Transfer, Part A, 57(12), pp. 893-910 (PDF) [Google Scholar].
  169. Shi, J., Li, C., Zhang, Y., and Li, H., 2010, “Coupled Heat and Mass Transfer in the Entrance Region of a Circular Tube with Fully-Developed Parabolic Flow and External Convective Heating,” Heat and Mass Transfer, 46(5), pp. 563-570 (PDF) [Google Scholar].
  170. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2010, “Inverse Estimation of Surface Heating Condition in a Three-Dimensional Object Using Conjugate Gradient Method,” Int. J. Heat Mass Transfer, 53(13-14), pp. 2643-2654 (PDF) [Google Scholar].
  171. Chen, T., and Zhang, Y., 2010, “Two-Dimensional Modeling of Sintering of a Powder Layer on Top of Nonporous Substrate,” Frontiers of Mechanical Engineering in China, 5(2), pp. 143-138 (PDF) [Google Scholar].
  172. Feng, Z.C., Chen, J.K., and, Zhang, Y., 2010, “Real-Time Solution of Heat Conduction in a Finite Slab for Inverse Analysis,” Int. J. Therm. Sci., 49(5), pp. 762-768 (PDF) [Google Scholar].
  173. Damronglerd, P., and Zhang, Y., 2010, “Numerical Simulation of Melting in Porous Media via a Modified Temperature-Transforming Model,” J. Thermophys. Heat Transfer, 24(2), pp. 340-347 (PDF) [Google Scholar].
  174. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2010, “Inverse Heat Conduction Using Measured Back Surface Temperature and Heat Flux,” J. Thermophys. Heat Transfer, 24(1), pp. 95-103 (PDF) [Google Scholar].
  175. Li, L., Zhang, Y., Ma, H. B., and Yang, M., 2010, “Molecular Dynamics Simulation of Effect of Liquid Layering around the Nanoparticle on the Enhanced Thermal Conductivity of Nanofluids,” J. Nanopart. Res., 12(3), pp. 811-821 (PDF) [Google Scholar].
  176. Zhang, Y., Damronglerd, P., and Yang, M., 2010, “ Analysis of Infiltration, Solidification, and Remelting of a Pure Metal in Subcooled Porous Preform,” Heat Transfer Eng., 31(7), pp. 555-563 (PDF) [Google Scholar].
  177. Zhou, J., Zhang, Y., Chen, J.K., and Feng, Z.C., 2010, “Inverse Heat Conduction in a Composite Slab with Pyrolysis Effect and Temperature-Dependent Thermophysical Properties,” J. Heat Transfer, 132(3), p. 034502 (PDF) [Google Scholar].
  178. Zhou, J., Chen, J.K., and Zhang, Y., 2010, “Simulation of Laser-Induced Thermotherapy Using a Dual-Reciprocity Boundary Element Model with Dynamic Tissue Properties,” IEEE Trans. Biomed. Eng., 57(2), pp. 238-245 (PDF) [Google Scholar].

    2009 (14 papers)

  179. Xu, J., Zhang, Y., and Ma, H. B., 2009, “Effect of Internal Wick Structure on Liquid-Vapor Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe,” J. Heat Transfer, 131(12), p. 121012 (PDF) [Google Scholar].
  180. Zhang, Y., Li, L., Ma, H. B., and Yang, M., 2009, “Effect of Brownian and Thermophoretic Diffusions of Nanoparticles on Nonequilibrium Heat Conduction in a Nanofluid Layer with Periodic Heat Flux,” Numer. Heat Transfer, Part A, 56(4), pp. 325-341 (PDF) [Google Scholar].
  181. Zhang, Y., 2009, “Generalized Dual-Phase Lag Bioheat Equations Based on Nonequilibrium Heat Transfer in Living Biological Tissues,” Int. J. Heat Mass Transfer, 52(21-22), pp. 4829-4834 (PDF) [Google Scholar].
  182. Huang, J., Zhang, Y., and Chen, J.K., 2009, “Ultrafast Solid-Liquid-Vapor Phase Change in a Thin Gold Film Irradiated by Multiple Femtosecond Laser Pulses,” Int. J. Heat Mass Transfer, 52(13-14), pp. 3091-3100 (PDF) [Google Scholar].
  183. Huang, J., Zhang, Y., and Chen, J.K., 2009, “Ultrafast Solid-Liquid-Vapor Phase Change of a Gold Film Induced by Pico- to Femtosecond Lasers,” Appl. Phys. A-Mater., 95(3), pp. 643–653 (PDF) [Google Scholar].
  184. Zhou, J., Zhang, Y., and Chen, J.K., 2009, “Numerical Simulation of Random Packing of Spherical Particles for Powder-Based Additive Manufacturing,” J. Manuf. Sci. Eng., 131(3), p. 031004 (PDF) [Google Scholar].
  185. Zhou, J., Zhang, Y., and Chen, J.K., 2009, “Numerical Simulation of Laser Irradiation to a Randomly Packed Bimodal Powder Bed,” Int. J. Heat Mass Transfer, 52(13-14), pp. 3137-3146 (PDF) [Google Scholar].
  186. Zhou, J., Zhang, Y., and Chen, J.K., 2009, “An Axisymmetric Dual-Phase-Lag Bioheat Transfer Model for Laser Heating of Living Tissues,” Int. J. Therm. Sci., 48(8), pp. 1477-1485 (PDF) [Google Scholar].
  187. Zhou, J., Chen, J.K., and Zhang, Y., 2009, “Dual-Phase Lag Effects on Thermal Damage to Biological Tissues Caused by Laser Irradiation,” Comput. Biol. Med., 39(3), pp. 286-293 (PDF) [Google Scholar].
  188. Xu, J., and, Zhang, Y., 2009, “Analysis of Heat Transfer during Liquid-Vapor Pulsating Flow in a U-Shaped Miniature Channel,” J. Enhanced Heat Transfer, 16(4), pp. 367-385 (PDF) [Google Scholar].
  189. Jiao, A., Zhang, Y., Ma, H. B., and Critser, J., 2009, “Effects of Lewis Number on Coupled Heat and Mass Transfer in a Circular Tube Subjected to External Convective Heating,” Heat and Mass Transfer, 45(5), pp. 591-598 (PDF) [Google Scholar].
  190. Zhou, J., Zhang, Y., and Chen, J.K., 2009, “Effects of Large Blood Vessels on the Transient Propagation of Ultrafast Laser Pulse in Biological Tissues,” Heat and Mass Transfer, 45(5), pp. 527-535 (PDF) [Google Scholar].
  191. Shi, Y., and Zhang, Y., 2009, “A Semi-Exact Solution for Solidification of a Binary Solution on a Cold Isothermal Surface below Eutectic Temperature,” Heat Transfer Eng., 30(5), pp. 368-374 (PDF) [Google Scholar].
  192. Xiao, B., and Zhang, Y., 2009, Numerical Simulation of Pulsatile Turbulent Flow in Tapering Stenosed Arteries,” Int. J. Numer. Methods Heat Fluid Flow, 19(5), pp. 561-573 (PDF) [Google Scholar].

    2008 (14 papers)

  193. Zhang, Y., and Chen, J.K., 2008, “Ultrafast Melting and Resolidification of Gold Particle Irradiated by Pico- to Femtosecond Lasers,” J. Appl. Phys., 104, p. 054910 (PDF) [Google Scholar].
  194. Shi, Y., and Zhang, Y., 2008, Simulation of Random Packing of Spherical Particles with Different Size Distributions,” Appl. Phys. A-Mater., 92(3), pp. 621-626 (PDF) [Google Scholar].
  195. Li, L., Zhang, Y., Ma, H. B., and Yang, M., 2008, “An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation,” Phys. Lett. A, 372(25), pp. 4541–4544 (PDF) [Google Scholar].
  196. Zhang, Y., and Ma, H. B., 2008, “Nonequilibrium Heat Conduction in a Nanofluid Layer with Periodic Heat Flux,” Int. J. Heat Mass Transfer, 51 (19-20), pp. 4862-4874 (PDF) [Google Scholar].
  197. Zhou, J., Zhang, Y., and Chen, J.K., 2008, “A Dual Reciprocity Boundary Element Method for Photothermal Interactions in Laser-Induced Thermotherapy,” Int. J. Heat Mass Transfer, 51 (15-16), pp. 3869-3881 (PDF) [Google Scholar].
  198. Wang, S., and Zhang, Y., 2008, “Forced-Convection Heat Transfer of Microencapsulated Phase-Change Material Suspensions Flow in a Circular Tube Subject to External Convective Heating,” J. Enhanced Heat Transfer, 15(2), pp. 171-181 (PDF) [Google Scholar].
  199. Li, L., Yang, M., and Zhang, Y., 2008, “Numerical Study of Periodically Fully-Developed Convection in Channels with Periodically Grooved Parts,” Int. J. Heat Mass Transfer, 51(11-12), pp. 3057-3065 (PDF) [Google Scholar].
  200. Ma, H. B., Borgmeyer, B., Cheng, P., and Zhang, Y., 2008, “Heat Transport Capability in an Oscillating Heat Pipe,” J. Heat Transfer, 130(8), p. 081501 (PDF) [Google Scholar].
  201. Xiao, B., and Zhang, Y., 2008, “Numerical Simulation of Direct Metal Laser Sintering of Single-Component Powder on Top of Sintered Layers,” J. Manuf. Sci. Eng., 130(4), p. 041002 (PDF) [Google Scholar].
  202. Zhang, Y., and Chen, J.K., 2008, “An Interfacial Tracking Method for Ultrashort Pulse Laser Melting and Resolidification of a Thin Metal Film,” J. Heat Transfer, 130(6), p. 062401 (PDF) [Google Scholar].
  203. Zhou, J., Zhang, Y., Chen, J.K., and Smith, D. E., 2008, “A Nonequilibrium Thermal Model for Rapid Heating and Pyrolysis of Organic Composites,” J. Heat Transfer, 130(6), p. 064501 (PDF) [Google Scholar].
  204. Zhou, J., Zhang, Y., and Chen, J.K., 2008, “Non-Fourier Heat Conduction Effect on Laser-Induced Thermal Damage in Biological Tissues,” Numer. Heat Transfer, Part A, 54(1), pp. 1-19 (PDF) [Google Scholar].
  205. Zhang, Y., and Faghri, A., 2008, “Advances and Unsolved Issues in Pulsating Heat Pipes,” Heat Transfer Eng., 29(1), pp. 20-44 (PDF) [Google Scholar].
  206. Zhou, J., Chen, J.K., and Zhang, Y., 2008 “Numerical Modeling of Transient Progression of Plasma Formation in Biological Tissues Induced by Short Laser Pulses,” Appl. Phys. B-Lasers, 90(1), pp. 141-148 (PDF) [Google Scholar].

    2007 (13 papers)

  207. Shi, Y., Zhang, Y., and Konrad, C., 2007, “Solid-Liquid-Vapor Phase Change of a Subcooled Metal Powder Particle Subjected to Nanosecond Laser Heating,” Nanoscale Microscale Thermophys. Eng., 11(3-4), pp. 301-318 (PDF) [Google Scholar].
  208. Xiao, B., and Zhang, Y., 2007, “Laser Sintering of Metal Powders on Top of Sintered Layers under Multiple-Line Laser Scanning,” J. Phys. D: Appl. Phys., 40(21), pp. 6725-6734 (PDF) [Google Scholar].
  209. Zhou, J., Chen, J.K., and Zhang, Y., 2007, “Theoretical Analysis of Thermal Damage in Biological Tissues Caused by Laser Irradiation,” Mol. Cell. Biomech., 4(1), pp. 27-39 (PDF) [Google Scholar].
  210. Zhang, Y., and Chen, J.K., 2007, “Melting and Resolidification of Gold Film Irradiated by Nano- to Femtosecond Lasers,” Appl. Phys. A-Mater., 88(2), pp. 289-297 (PDF) [Google Scholar].
  211. Zhou, J., Zhang, Y., and Chen, J.K., 2007, “Numerical Simulation of Compressible Gas Flow and Heat Transfer in a Microchannel Surrounded by Solid Media,” Int. J. Heat Fluid Flow, 28(6), pp. 1484-1491 (PDF) [Google Scholar].
  212. Chen, T., and Zhang, Y., 2007, “Three-Dimensional Modeling of Laser Sintering of a Two-Component Metal Powder Layer on Top of Sintered Layers,” J. Manuf. Sci. Eng., 129(3), pp. 575-582 (PDF) [Google Scholar].
  213. Xiao, B., and Zhang, Y., 2007, “Analysis of Melting of Alloy Powder Bed with Constant Heat Flux,” Int. J. Heat Mass Transfer, 50(11-12), pp. 2161-2169 (PDF) [Google Scholar].
  214. Konrad, C., Zhang, Y., and Shi, Y., 2007, “Melting and Resolidification of a Subcooled Metal Powder Particle Subjected to Nanosecond Laser Heating,” Int. J. Heat Mass Transfer, 50(11-12), pp. 2236-2245 (PDF) [Google Scholar].
  215. Chen, T., and Zhang, Y., 2007, “Thermal Modeling of Laser Sintering of Two-Component Metal Powder on Top of Sintered Layers via Multi-line Scanning,” Appl. Phys. A-Mater., 86(2), pp. 213-220 (PDF) [Google Scholar].
  216. Damronglerd, P., and Zhang, Y., 2007, “Modified Temperature-Transforming Model for Convection-Controlled Melting,” J. Thermophys. Heat Transfer, 21(1), pp. 203-208 (PDF) [Google Scholar].
  217. Xiao, B., and Zhang, Y., 2007, “Marangoni and Buoyancy Effects on Direct Metal Laser Sintering with a Moving Laser Beam,” Numer. Heat Transfer, Part A, 51(7-8), pp. 715-733 (PDF) [Google Scholar].
  218. Xiao, B., and Zhang, Y., 2007, “Analysis of Partial Melting in Metal Powder Bed with Constant Heat Flux,” Heat Transfer Eng., 28(5), pp. 472-483 (PDF) [Google Scholar].
  219. Zhou, J., Yu, A., and Zhang, Y., 2007, “A Boundary Element Method for Evaluation of the Effective Thermal Conductivity of Packed Beds,” J. Heat Transfer, 129(3), pp. 363-371 (PDF) [Google Scholar].

    2006 (8 papers)

  220. Zhang, Y., 2006, Nonequilibrium Modeling of Heat Transfer in a Gas-Saturated Powder Layer Subject to a Short-Pulsed Heat Source,” Numer. Heat Transfer, Part A, 50(6), pp. 509-524 (PDF) [Google Scholar].
  221. Chen, T., and Zhang, Y., 2006, “Analysis of Melting in a Subcooled Two-Component Metal Powder Layer with Constant Heat Flux,” Appl. Therm. Eng., 26(7), pp. 751-765 (PDF) [Google Scholar].
  222. Chen, T., and Zhang, Y., 2006, “A Partial Shrinkage Model for Selective Laser Sintering of a Two-Component Metal Powder Layer,” Int. J. Heat Mass Transfer, 49(7-8), pp. 1489-1492 (PDF) [Google Scholar].
  223. Xiao, B., and Zhang, Y., 2006, “Partial Melting and Resolidification of Metal Powder in Selective Laser Sintering,” J. Thermophys. Heat Transfer, 20(3), pp. 439-448 (PDF) [Google Scholar].
  224. Damronglerd, P. and Zhang, Y., 2006, “Transient Fluid Flow and Heat Transfer in a Porous Structure with Partial Heating and Evaporation on the Upper Surface,” J. Enhanced Heat Transfer, 13(1), pp. 53-64 (PDF) [Google Scholar].
  225. Chen, T., and Zhang, Y., 2006, “Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers,” J. Manuf. Sci. Eng., 128(1), pp. 299-306 (PDF) [Google Scholar].
  226. Ma, Z. H., and Zhang, Y., 2006, “Solid Velocity Correction Schemes for a Temperature Transforming Model for Convection Phase Change,” Int. J. Numer. Methods Heat Fluid Flow, 16(2), pp. 204-225 (PDF) [Google Scholar].
  227. Boyden, S., and Zhang, Y., 2006, “Temperature and Wavelength-Dependent Spectral Absorptivities of Metallic Materials in the Infrared,” J. Thermophys. Heat Transfer, 20(1), pp. 9-15 (PDF) [Google Scholar].

    2005 and Before

  228. Konrad, C., Zhang, Y., and Xiao, B., 2005, “Analysis of Melting and Resolidification in a Two-Component Metal Powder Bed Subjected to Temporal Gaussian Heat Flux,” Int. J. Heat Mass Transfer, 48(19-20), pp. 3932-3944 (PDF) [Google Scholar].
  229. Zhang, Y., 2004, “A Simulation-Based Correlation of Cross-Sectional Area of the Thin Film Produced by Laser Chemical Vapor Deposition with a Moving Laser Beam,” J. Manuf. Sci. Eng., 126(4), pp. 796-800 (PDF) [Google Scholar].
  230. Chen, T., and Zhang, Y., 2004, “Numerical Simulation of Two-Dimensional Melting and Resolidification of a Two-Component Metal Powder Layer in Selective Laser Sintering Process,” Numer. Heat Transfer, Part A, 46(7), pp. 633-649 (PDF) [Google Scholar].
  231. Zhang, Y., 2004, “Effect of Natural Convection on Laser Chemical Vapor Deposition with a Stationary Laser Beam,” Int. J. Heat Fluid Flow, 25 (4), pp. 683-691 (PDF) [Google Scholar].
  232. Zhang, Y., 2003, “Quasi-Steady State Natural Convection in Laser Chemical Vapor Deposition using a Moving Laser Beam,J. Heat Transfer, 125(3), pp. 429-437 (PDF) [Google Scholar].
  233. Zhang, Y., and Faghri, A., 2003, “Oscillatory Flow in Pulsating Heat Pipes with Arbitrary Numbers of Turns,” J. Thermophys. Heat Transfer, 17(3), pp. 340-347 (PDF) [Google Scholar].
  234. Zhang, Y., 2002, “Coupled Forced Convective Heat and Mass Transfer in a Circular Tube with External Convective Heating,” Prog. Comput. Fluid Dyn., Int. J., 2(2-4), pp. 90-96 (PDF) [Google Scholar].
  235. Shafii, M. B., Faghri, A., and Zhang, Y., 2002, “Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes,Int. J. Numer. Methods Heat Fluid Flow, 12(5), pp. 585-609 (PDF) [Google Scholar].
  236. Zhang, Y., Faghri, A., and Shafii, M.B., 2002, “Analysis of Liquid-Vapor Pulsating Flow in a U-shaped Miniature Tube ,” Int. J. Heat Mass Transfer, 45(12), pp. 2501-2508 (PDF) [Google Scholar].
  237. Zhang, Y., and Faghri, A., 2002, “Heat Transfer in a Pulsating Heat Pipe with Open End,” Int. J. Heat Mass Transfer, 45(4), pp. 755-764 (PDF) [Google Scholar].
  238. Shafii, M. B., Faghri, A., and Zhang, Y., 2001, “Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes,“ J. Heat Transfer, 123(6), pp. 1159-1172 (PDF) [Google Scholar].
  239. Zhang, Y., and Faghri, A., 2001, "Numerical Simulation of Condensation on a Capillary Grooved Structure,” Numer. Heat Transfer, Part A, 39(3), pp. 227-243 (PDF) [Google Scholar].
  240. Zhang, Y., Faghri, A., Shafii, M. B., 2001, “Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels,” J. Heat Transfer, 123(3), pp. 501-511 (PDF) [Google Scholar].
  241. Zhang, Y., and Faghri, A., 2000, “Thermal Modeling of Selective Area Laser Deposition of Titanium Nitride on a Finite Slab with Stationary and Moving Laser Beams,” Int. J. Heat Mass Transfer, 43(20), pp. 3835-3846 (PDF) [Google Scholar].
  242. Zhang, Y., Faghri, A., Buckley, C.W., and Bergman, T.L., 2000, “Three-Dimensional Sintering of Two-Component Metal Powders with Stationary and Moving Laser Beams,” J. Heat Transfer, 122(1), pp. 150-158 (PDF) [Google Scholar].
  243. Zhang, Y., and Faghri, A., 1999, “Vaporization, Melting and Heat Conduction in the Laser Drilling Process,” Int. J. Heat Mass Transfer, 42(10), pp. 1775-1790 (PDF) [Google Scholar].
  244. Zhang, Y., and Faghri, A., 1999, “Melting of a Subcooled Mixed Powder Bed with Constant Heat Flux Heating,” Int. J. Heat Mass Transfer, 42(5), pp. 775-788 (PDF) [Google Scholar]
  245. Zhang, Y., and Faghri, A., 1998, “Melting and Resolidification of a Subcooled Mixed Powder Bed with Moving Gaussian Heat Source,” J. Heat Transfer, 120(4), pp. 883-891 (PDF) [Google Scholar].
  246. Zhang, Y., and Faghri, A., 1998, “A Thermal Model for Mushy Zone Formation in Binary Solutions,” J. Sol. Energy Eng., 120(2), pp. 144-147 (PDF) [Google Scholar].
  247. Zhang, Y., and Faghri, A., 1997, “Analysis of Freezing in an Eccentric Annulus,” J. Sol. Energy Eng., 119(3), pp. 237-241 (PDF) [Google Scholar].
  248. Zhang, Y., Chen, Z.Q., and Faghri, A., 1997, “Heat Transfer During Solidification around a Horizontal Tube with Internal Convective Cooling,” J. Sol. Energy Eng., 119(1), pp. 44-47 (PDF) [Google Scholar].
  249. Zhang, Y., and Faghri, A., 1996, “Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using the Internally Finned Tube,” Int. J. Heat Mass Transfer, 39(15), pp. 3165-3173 (PDF) [Google Scholar].
  250. Zhang, Y., and Faghri, A., 1996, “Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using an External Radical Finned Tube,” J. Enhanced Heat Transfer, 3(2), pp. 119-127 (PDF) [Google Scholar].
  251. Zhang, Y., and Faghri, A., 1996, “An Integral Approximate Solution of Heat Transfer in the Grinding Process,” Int. J. Heat Mass Transfer, 39(13), pp. 2653-2662 (PDF) [Google Scholar].
  252. Zhang, Y., and Faghri, A., 1996, “Semi- Analytical Solution of Thermal Energy Storage System with Conjugate Laminar Forced Convection,” Int. J. Heat Mass Transfer, 39(4), pp. 717-724 (PDF) [Google Scholar].
  253. Zhang, Y., Chen, Z.Q., and Chen, M., 1996, “Local Non-Similarity Solution of Coupled Heat-Mass Transfer of a Flat Plate with Uniform Heat Flux in a Laminar Parallel Flow,” J. Thermal Science, 5(2), pp. 112-116 (PDF) [Google Scholar].
  254. Chen, M., and Zhang, Y., 1995, “Letter to the Editor,” Applied Mathematical Modeling, 19(8), p. 510.
  255. Zhang, Y., and Faghri, A., 1995, “Analysis of Thermal Energy Storage System with Conjugate Turbulent Forced Convection,” J. Thermophys. Heat Transfer, 9(4), pp. 722-726 (PDF) [Google Scholar].
  256. Zhang, Y., and Faghri, A., 1995, “Analysis of Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions,” J. Thermophys. Heat Transfer, 9(4), pp. 727-732 (PDF) [Google Scholar].
  257. Zhang, Y., and Chen, Z.Q., 1994, “Effect of Wall Conduction on Melting in an Enclosure Heated at Constant Rate,” Int. J. Heat Mass Transfer, 37(2), pp. 340-343 (PDF) [Google Scholar].
  258. Zhang, Y., Chen, Z.Q., and Wang, Q.J., 1994, “Analysis of Melting in an Enclosure with Discrete Heating at Constant Rate,” Int. J. Heat Fluid Flow, 15(1), pp. 79-82 (PDF) [Google Scholar].
  259. Zhang, Y., and Ju, Y., 1994, “Analysis of Solidification in the Presence of High Rayleigh Number Convection in an Enclosure,” J. Thermal Science, 3(3), pp. 173-176 (PDF) [Google Scholar].
  260. Zhang, Y., W. Li and Chen, Z.Q., 1994, “Heat Transfer on an Aligned Tube Bank with Enlarged First Row Tube,” J. Xi’an Jiaotong University, 28(9), 44-50 (PDF)
    (in Chinese: 张玉文, 李娬, 陈钟颀, 首排管径增大时顺排管束的对流换热, 西安交通大学学报, 28卷,第9,44-50, 199412) [Google Scholar]
  261. Zhang, Y., Chen, Z.Q., Wang, Q.J., and Wu, Q.J., 1994, “Numerical Solution of Melting in a Rectangular Cavity with Discrete Heat Sources,” Chinese J. Computat. Phys., 11(1), pp. 9-16 (PDF)
    (in Chinese: 张玉文, 陈钟颀,王启杰,吴清金, 有分散热源时矩形区域内熔化问题的数值解, 计算物理, 11卷,第1,9-16, 19943) [Google Scholar]
  262. Chen, M., Zhang, Y., and Chen, Z.Q., 1994, “Solidification in a Concentric Annulus with Boundary Conditions of the Third Kind,” Acta Energiae Solaris Sinica, 15(1), pp. 43-49 (PDF)
    (in Chinese: 陈明勇, 张玉文, 陈钟颀, 第三类边界条件下环形空腔内凝固问题的研究, 太阳能学报, 15卷,第1,43-49, 1994) [Google Scholar]
  263. Dan, J., Zhang, Y., and Chen, Z.Q., 1994, “Heat Transfer and Pressure Drop Characteristics for Non-Standard Staggered Fin Array with Top Clearance Aligned Parallel to an Air Flow,” Acta Energiae Solaris Sinica, 15(2), pp. 147-152 (PDF)
    (in Chinese: 淡建宇, 张玉文, 陈钟颀, 空气纵掠带顶端间隙的非标准错列肋片簇的换热及阻力性能的研究, 太阳能学报, 15卷,第2,147-152, 1994) [Google Scholar].
  264. Ju, Y., Zhang, Y. and Chen, Z.Q., 1994, “Studies on Thermal Performance of Fin Array with Coupled Radiation and Convection,” J. Gansu Sciences, 6(3), pp. 27-30 (PDF)
    (in Chinese: 巨永林, 张玉文, 陈钟颀, 复合换热情况下肋片性能的研究, 甘肃科学学报,6卷,第3,24-30, 1994) [Google Scholar].
  265. Zhang, Y., Jin, Y.Y., Chen, Z.Q., Dong, Z.F., and Ebadian, M.A., 1993, “An analytical Solution to Melting in a Finite Slab with a Boundary Condition of the Second Kind,” J. Heat Transfer, 115(2), pp. 463-467 (PDF) [Google Scholar].
  266. Zhang, Y., Chen, Z.Q., Wang, Q.J., and Wu, Q.J., 1993, “Melting in an Enclosure with Discrete Heating at Constant Rate,” Exp. Therm. Fluid Sci., 6(2), pp. 196-201 (PDF) [Google Scholar].
  267. Zhang, Y., and Chen, Z.Q., 1993, “Solidification around Horizontal Cylinder Controlled by Natural Convection,” Acta Energiae Solaris Sinica, 14(4), pp. 357-363 (PDF)
    (in Chinese: 张玉文, 陈钟颀, 自然对流控制下水平圆管外凝固问题的研究, 太阳能学报, 14卷,第4,357-363, 1993) [Google Scholar].
  268. Zhang, Y., Chen, Z.Q., and Wang, Q.J., 1993, “Analytical Solution of Melting in a Subcooled Semi- Infinite Solid with Boundary Condition of the Second Kind,” J. Thermal Science, 2(2), pp. 111-115 (PDF) [Google Scholar].
  269. Zhang, Y., and Ju, Y., 1993, “Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling,” J. Thermal Science, 2(4), pp. 266-269 (PDF) [Google Scholar].
  270. Zhang, Y., and Chen, Z.Q., 1993, “Fully Automatic Measuring System of Local Mass/Heat Transfer Coefficient,” Experimental Technique and Management, 10(2), pp. 33-35 (PDF)
    (in Chinese: 张玉文, 陈钟颀, 局部质()交换系数的全自动测量系统, 实验技术与管理, 10卷,第2,33-35, 1993) [Google Scholar]
  271. Zhang, Y., Chen, Z.Q., and Liu, X.D., 1993, “Radiative Heat Transfer of an Isolated Phase Circular Bus with Slots,” Electric Power Construction, 14(7), pp. 1-2 (PDF)
    (in Chinese: 张玉文, 陈钟颀, 刘咸定, 双半圆形自冷封闭母线内辐射换热计算, 电力建设, 14卷,第7,1-2, 1993) [Google Scholar].
  272. Zhang, Y., Chen, Z.Q., and Dong, Z.F., 1993, “Thermodynamic Analysis of Latent Heat Energy Storage System,” J. Gansu Sciences, 5(3), pp. 28-32 (PDF).
    (in Chinese: 张玉文, 陈钟颀, 董志锋, 潜热蓄热系统的热力学分析, 甘肃科学学报,5卷,第3,28-32, 1993) [Google Scholar].
  273. Zhang, Y., and Chen, Z.Q., 1992, “The Effect of a Gap between Layers on the Heat Transfer Performance of Aligned Tube Banks,” Heat Transfer Eng., 13(2), pp. 33-41 (PDF) [Google Scholar].
  274. Zhang, Y., and Chen, Z.Q., 1992, “Analytical Solution of Coupled Laminar Heat-Mass Transfer in a Tube with Uniform Heat Flux,” J. Thermal Science, 1(3), 184-188 (PDF) [Google Scholar].
  275. Zhang, Y., and Chen, Z.Q., 1989, “Numerical Analysis of Fin Surface with Radiation and Convection,” J. Engineering Thermophys., 10(1), pp. 69-71 (PDF)
    (in Chinese: 张玉文, 陈钟颀, 辐射对流条件下肋片散热的数值计算, 工程热物理学报, 第10卷,第1期, 第69-71页, 1989年2月) [Google Scholar].